These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 8731147)

  • 1. Canine bone response to tyrosine-derived polycarbonates and poly(L-lactic acid).
    Choueka J; Charvet JL; Koval KJ; Alexander H; James KS; Hooper KA; Kohn J
    J Biomed Mater Res; 1996 May; 31(1):35-41. PubMed ID: 8731147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of poly(DTH carbonate), a tyrosine-derived degradable polymer, for orthopedic applications.
    Ertel SI; Kohn J; Zimmerman MC; Parsons JR
    J Biomed Mater Res; 1995 Nov; 29(11):1337-48. PubMed ID: 8582902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small changes in polymer chemistry have a large effect on the bone-implant interface: evaluation of a series of degradable tyrosine-derived polycarbonates in bone defects.
    James K; Levene H; Parsons JR; Kohn J
    Biomaterials; 1999 Dec; 20(23-24):2203-12. PubMed ID: 10614927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative histological evaluation of new tyrosine-derived polymers and poly (L-lactic acid) as a function of polymer degradation.
    Hooper KA; Macon ND; Kohn J
    J Biomed Mater Res; 1998 Sep; 41(3):443-54. PubMed ID: 9659614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fate of bioresorbable poly(lactic acid) microbeads implanted in artificial bone defects for cortical bone augmentation in dog mandible.
    Anselme K; Flautre B; Hardouin P; Chanavaz M; Ustariz C; Vert M
    Biomaterials; 1993; 14(1):44-50. PubMed ID: 8425024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices.
    Tangpasuthadol V; Pendharkar SM; Peterson RC; Kohn J
    Biomaterials; 2000 Dec; 21(23):2379-87. PubMed ID: 11055285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue compatibility of tyrosine-derived polycarbonates and polyiminocarbonates: an initial evaluation.
    Silver FH; Marks M; Kato YP; Li C; Pulapura S; Kohn J
    J Long Term Eff Med Implants; 1992; 1(4):329-46. PubMed ID: 10171118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [In vitro study of the properties of bioresorbable lactic acid polymer materials].
    Merloz P; Minfelde R; Schelp C; Lavaste F; Huet-Olivier J; Faure C; Butel J
    Rev Chir Orthop Reparatrice Appar Mot; 1995; 81(5):433-44. PubMed ID: 8560013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part I: study of model compounds.
    Tangpasuthadol V; Pendharkar SM; Kohn J
    Biomaterials; 2000 Dec; 21(23):2371-8. PubMed ID: 11055284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxylapatite/poly(L-lactide) composites: an animal study on push-out strengths and interface histology.
    Verheyen CC; de Wijn JR; van Blitterswijk CA; de Groot K; Rozing PM
    J Biomed Mater Res; 1993 Apr; 27(4):433-44. PubMed ID: 8385142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforced Poly(Propylene Carbonate) Composite with Enhanced and Tunable Characteristics, an Alternative for Poly(lactic Acid).
    Manavitehrani I; Fathi A; Wang Y; Maitz PK; Dehghani F
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22421-30. PubMed ID: 26376751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of bioerodible polymeric microspheres and microparticles by rapid expansion of supercritical solutions.
    Tom JW; Debenedetti PG
    Biotechnol Prog; 1991; 7(5):403-11. PubMed ID: 1369363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and evaluation of biodegradable films containing the potent osteogenic compound BFB0261 for localized delivery.
    Umeki N; Sato T; Harada M; Takeda J; Saito S; Iwao Y; Itai S
    Int J Pharm; 2011 Feb; 404(1-2):10-8. PubMed ID: 21047548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary development of a novel resorbable synthetic polymer fiber scaffold for anterior cruciate ligament reconstruction.
    Bourke SL; Kohn J; Dunn MG
    Tissue Eng; 2004; 10(1-2):43-52. PubMed ID: 15009929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone-derived growth factor release from poly(alpha-hydroxy acid) implants in vitro.
    Meikle MC; Mak WY; Papaioannou S; Davies EH; Mordan N; Reynolds JJ
    Biomaterials; 1993 Feb; 14(3):177-83. PubMed ID: 8386553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of plasma glow, glutaraldehyde and carbodiimide treatments on the enzymic degradation of poly (L-lactic acid) and poly (gamma-benzyl-L-glutamate) films.
    Chandy T; Sharma CP
    Biomaterials; 1991 Sep; 12(7):677-82. PubMed ID: 1720676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absorption, biocompatibility, and fixation properties of polylactic acid in bone tissue: an experimental study in rats.
    Majola A; Vainionpää S; Vihtonen K; Mero M; Vasenius J; Törmälä P; Rokkanen P
    Clin Orthop Relat Res; 1991 Jul; (268):260-9. PubMed ID: 2060218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Studies on in vivo biocompatibility and biodegradation of absorbable material of polylactic acid].
    Ruan DK
    Zhonghua Wai Ke Za Zhi; 1993 Sep; 31(9):568-70. PubMed ID: 8033728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradative behaviour of polymeric matrices in (sub)dermal and muscle tissue of the rat: a quantitative study.
    Beumer GJ; van Blitterswijk CA; Ponec M
    Biomaterials; 1994 Jun; 15(7):551-9. PubMed ID: 7918908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trends in the development of bioresorbable polymers for medical applications.
    Pulapura S; Kohn J
    J Biomater Appl; 1992 Jan; 6(3):216-50. PubMed ID: 1573554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.