These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 8731156)
1. In vitro cell response to differences in poly-L-lactide crystallinity. Park A; Cima LG J Biomed Mater Res; 1996 May; 31(1):117-30. PubMed ID: 8731156 [TBL] [Abstract][Full Text] [Related]
2. Surface patterning of poly(L-lactide) upon melt processing: in vitro culturing of fibroblasts and osteoblasts on surfaces ranging from highly crystalline with spherulitic protrusions to amorphous with nanoscale indentations. Degirmenbasi N; Ozkan S; Kalyon DM; Yu X J Biomed Mater Res A; 2009 Jan; 88(1):94-104. PubMed ID: 18260148 [TBL] [Abstract][Full Text] [Related]
3. Structure, morphology and cell affinity of poly(L-lactide) films surface-functionalized with chitosan nanofibers via a solid-liquid phase separation technique. Zhao J; Han W; Tang M; Tu M; Zeng R; Liang Z; Zhou C Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1546-53. PubMed ID: 23827607 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of cell affinity on poly(L-lactide) and poly(epsilon-caprolactone) blends and on PLLA-b-PCL diblock copolymer surfaces. Ajami-Henriquez D; Rodríguez M; Sabino M; Castillo RV; Müller AJ; Boschetti-de-Fierro A; Abetz C; Abetz V; Dubois P J Biomed Mater Res A; 2008 Nov; 87(2):405-17. PubMed ID: 18186046 [TBL] [Abstract][Full Text] [Related]
5. Mechanical and thermal property characterization of poly-l-lactide (PLLA) scaffold developed using pressure-controllable green foaming technology. Sheng SJ; Hu X; Wang F; Ma QY; Gu MF Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():612-622. PubMed ID: 25686990 [TBL] [Abstract][Full Text] [Related]
6. In vitro hydrolysis of poly(L-lactide) crystalline residues as extended-chain crystallites. Part I: long-term hydrolysis in phosphate-buffered solution at 37 degrees C. Tsuji H; Ikarashi K Biomaterials; 2004 Nov; 25(24):5449-55. PubMed ID: 15142725 [TBL] [Abstract][Full Text] [Related]
7. The effect of crystallinity on the deformation mechanism and bulk mechanical properties of PLLA. Renouf-Glauser AC; Rose J; Farrar DF; Cameron RE Biomaterials; 2005 Oct; 26(29):5771-82. PubMed ID: 15949544 [TBL] [Abstract][Full Text] [Related]
9. Study of the chain microstructure effects on the resulting thermal properties of poly(L-lactide)/poly(N-isopropylacrylamide) biomedical materials. Lizundia E; Meaurio E; Laza JM; Vilas JL; León Isidro LM Mater Sci Eng C Mater Biol Appl; 2015 May; 50():97-106. PubMed ID: 25746250 [TBL] [Abstract][Full Text] [Related]
10. Heterostereocomplexation between biodegradable and optically active polyesters as a versatile preparation method for biodegradable materials. Tsuji H; Yamamoto S; Okumura A; Sugiura Y Biomacromolecules; 2010 Jan; 11(1):252-8. PubMed ID: 20000347 [TBL] [Abstract][Full Text] [Related]
11. Controlled preparation and properties of porous poly(L-lactide) obtained from a co-continuous blend of two biodegradable polymers. Sarazin P; Roy X; Favis BD Biomaterials; 2004 Dec; 25(28):5965-78. PubMed ID: 15183611 [TBL] [Abstract][Full Text] [Related]
12. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. 3. Homocrystallized and amorphous blend films. Tsuji H; Del Carpio CA Biomacromolecules; 2003; 4(1):7-11. PubMed ID: 12523839 [TBL] [Abstract][Full Text] [Related]
13. Processing and characterization of absorbable polylactide polymers for use in surgical implants. Andriano KP; Pohjonen T; Törmälä P J Appl Biomater; 1994; 5(2):133-40. PubMed ID: 10172072 [TBL] [Abstract][Full Text] [Related]
14. Crystallinity assessment and in vitro cytotoxicity of polylactide scaffolds for biomedical applications. Sarasua JR; López-Rodríguez N; Zuza E; Petisco S; Castro B; del Olmo M; Palomares T; Alonso-Varona A J Mater Sci Mater Med; 2011 Nov; 22(11):2513-23. PubMed ID: 21858721 [TBL] [Abstract][Full Text] [Related]
15. Synthesis, solid-state structure, and surface properties of end-capped poly(L-lactide). Kobori Y; Iwata T; Doi Y; Abe H Biomacromolecules; 2004; 5(2):530-6. PubMed ID: 15003017 [TBL] [Abstract][Full Text] [Related]
16. Plastic deformation of amorphous poly(L/DL-lactide): structure evolution and physical properties. Pluta M; Galeski A Biomacromolecules; 2007 Jun; 8(6):1836-43. PubMed ID: 17472336 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterization of poly(L-lactide)-co-poly(trimethylene carbonate)/talc film. Yang J; Qin Y; Yuan M; Xue J; Cao J; Wu Y; Yuan M Int J Biol Macromol; 2013 Nov; 62():411-7. PubMed ID: 24099935 [TBL] [Abstract][Full Text] [Related]
18. Morphology and internal structure control over PLA microspheres by compounding PLLA and PDLA and effects on drug release behavior. Yu B; Meng L; Fu S; Zhao Z; Liu Y; Wang K; Fu Q Colloids Surf B Biointerfaces; 2018 Dec; 172():105-112. PubMed ID: 30142528 [TBL] [Abstract][Full Text] [Related]
19. Degradation of high molecular weight poly(L-lactide) in alkaline medium. Cam D; Hyon SH; Ikada Y Biomaterials; 1995 Jul; 16(11):833-43. PubMed ID: 8527598 [TBL] [Abstract][Full Text] [Related]
20. Selective enzymatic degradations of poly(L-lactide) and poly(epsilon-caprolactone) blend films. Liu L; Li S; Garreau H; Vert M Biomacromolecules; 2000; 1(3):350-9. PubMed ID: 11710123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]