These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A fractographic analysis of in vivo poly(methyl methacrylate) bone cement failure mechanisms. Topoleski LD; Ducheyne P; Cuckler JM J Biomed Mater Res; 1990 Feb; 24(2):135-54. PubMed ID: 2329111 [TBL] [Abstract][Full Text] [Related]
6. Micromechanisms of fatigue crack initiation and propagation in bone cements. Bhambri SK; Gilbertson LN J Biomed Mater Res; 1995 Feb; 29(2):233-7. PubMed ID: 7738071 [TBL] [Abstract][Full Text] [Related]
7. Fatigue crack propagation rates in PMMA bone cement cannot be reduced to a single power law. Race A; Mann KA J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):278-82. PubMed ID: 18161813 [TBL] [Abstract][Full Text] [Related]
8. Propagation of fatigue cracks in acrylic bone cements containing different radiopaque agents. Manero JM; Ginebra MP; Gil FJ; Planell JA; Delgado JA; Morejon L; Artola A; Gurruchaga M; Goñi I Proc Inst Mech Eng H; 2004; 218(3):167-72. PubMed ID: 15239567 [TBL] [Abstract][Full Text] [Related]
9. A fractographic investigation of PMMA bone cement focusing on the relationship between porosity reduction and increased fatigue life. James SP; Jasty M; Davies J; Piehler H; Harris WH J Biomed Mater Res; 1992 May; 26(5):651-62. PubMed ID: 1512284 [TBL] [Abstract][Full Text] [Related]
10. Fracture properties of an acrylic bone cement. Bialoblocka-Juszczyk E; Baleani M; Cristofolini L; Viceconti M Acta Bioeng Biomech; 2008; 10(1):21-6. PubMed ID: 18634350 [TBL] [Abstract][Full Text] [Related]
11. The effects of centrifugation and titanium fiber reinforcement on fatigue failure mechanisms in poly(methyl methacrylate) bone cement. Topoleski LD; Ducheyne P; Cuckler JM J Biomed Mater Res; 1995 Mar; 29(3):299-307. PubMed ID: 7615581 [TBL] [Abstract][Full Text] [Related]
12. Fatigue crack propagation under variable amplitude loading in PMMA and bone cement. Evans SL J Mater Sci Mater Med; 2007 Sep; 18(9):1711-7. PubMed ID: 17483908 [TBL] [Abstract][Full Text] [Related]
13. Fatigue strength of PMMA bone cement mixed with gentamicin and barium sulphate vs pure PMMA. Baleani M; Cristofolini L; Minari C; Toni A Proc Inst Mech Eng H; 2003; 217(1):9-12. PubMed ID: 12578214 [TBL] [Abstract][Full Text] [Related]
14. Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures. Kurtz SM; Villarraga ML; Zhao K; Edidin AA Biomaterials; 2005 Jun; 26(17):3699-712. PubMed ID: 15621260 [TBL] [Abstract][Full Text] [Related]
15. Fatigue fracture of the stem-cement interface with a clamped cantilever beam test. Heuer DA; Mann KA J Biomech Eng; 2000 Dec; 122(6):647-51. PubMed ID: 11192387 [TBL] [Abstract][Full Text] [Related]
16. Mechanical behaviour of a new acrylic radiopaque iodine-containing bone cement. van Hooy-Corstjens CS; Govaert LE; Spoelstra AB; Bulstra SK; Wetzels GM; Koole LH Biomaterials; 2004 Jun; 25(13):2657-67. PubMed ID: 14751752 [TBL] [Abstract][Full Text] [Related]
17. Mechanical properties of acrylic bone cement containing PMMA-SiO2 hybrid sol-gel material. Yang JM; Lu CS; Hsu YG; Shih CH J Biomed Mater Res; 1997; 38(2):143-54. PubMed ID: 9178742 [TBL] [Abstract][Full Text] [Related]
18. Fracture toughness of CoCr alloy-PMMA cement interface. Mann KA; Edidin AA; Ordway NR; Manley MT J Biomed Mater Res; 1997; 38(3):211-9. PubMed ID: 9283966 [TBL] [Abstract][Full Text] [Related]
19. Mechanical performance of acrylic bone cements containing different radiopacifying agents. Ginebra MP; Albuixech L; Fernández-Barragán E; Aparicio C; Gil FJ; San RJ; Vázquez B; Planell JA Biomaterials; 2002 Apr; 23(8):1873-82. PubMed ID: 11950058 [TBL] [Abstract][Full Text] [Related]
20. Microtomography assessment of failure in acrylic bone cement. Sinnett-Jones PE; Browne M; Ludwig W; Buffière JY; Sinclair I Biomaterials; 2005 Nov; 26(33):6460-6. PubMed ID: 15967499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]