These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 8731212)

  • 1. Surface microarchitectural design in biomedical applications: in vitro transmural endothelialization on microporous segmented polyurethane films fabricated using an excimer laser.
    Matsuda T; Nakayama Y
    J Biomed Mater Res; 1996 Jun; 31(2):235-42. PubMed ID: 8731212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel compliant and tissue-permeable microporous polyurethane vascular prosthesis fabricated using an excimer laser ablation technique.
    Doi K; Nakayama Y; Matsuda T
    J Biomed Mater Res; 1996 May; 31(1):27-33. PubMed ID: 8731146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Newly designed compliant hierarchic hybrid vascular graft wrapped with microprocessed elastomeric film--II: Morphogenesis and compliance change upon implantation.
    He H; Matsuda T
    Cell Transplant; 2002; 11(1):75-87. PubMed ID: 12095223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelialization on various segmented polyurethanes: cellular behavior and its substrate dependency.
    Niu S; Matsuda T; Oka T
    ASAIO Trans; 1990; 36(3):M164-8. PubMed ID: 2252650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microporous polymer surfaces prepared by an excimer laser ablation technique.
    Nakayama Y; Matsuda T
    ASAIO J; 1994; 40(3):M590-3. PubMed ID: 8555583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced vascularization in a microporous polyurethane graft impregnated with basic fibroblast growth factor and heparin.
    Doi K; Matsuda T
    J Biomed Mater Res; 1997 Mar; 34(3):361-70. PubMed ID: 9086406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface microarchitectural design in biomedical applications: in vivo analysis of tissue ingrowth in excimer laser-directed micropored scaffold for cardiovascular tissue engineering.
    Nakayama Y; Nishi S; Ishibashi-Ueda H; Matsuda T
    J Biomed Mater Res; 2000 Sep; 51(3):520-8. PubMed ID: 10880097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vascular endothelial growth factor enhances vascularization in microporous small caliber polyurethane grafts.
    Masuda S; Doi K; Satoh S; Oka T; Matsuda T
    ASAIO J; 1997; 43(5):M530-4. PubMed ID: 9360099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new microporous polyurethane vascular graft prepared by an excimer laser ablation technique.
    Doi K; Nakayama Y; Oka T; Matsuda T
    ASAIO J; 1995; 41(3):M608-11. PubMed ID: 8573877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significance of porosity and compliance of microporous, polyurethane-based microarterial vessel on neoarterial wall regeneration.
    Doi K; Matsuda T
    J Biomed Mater Res; 1997 Dec; 37(4):573-84. PubMed ID: 9407307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro model of endothelialization at anastomotic sites.
    Niu S; Matsuda T; Oka T
    ASAIO Trans; 1990; 36(3):M757-60. PubMed ID: 2147558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impregnation of basic fibroblast growth factor on a microporous small caliber graft enhances vascularization.
    Doi K; Satoh S; Oka T; Matsuda T
    ASAIO J; 1996; 42(5):M394-8. PubMed ID: 8944914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelialization of biosynthetic vascular prostheses after laser perforation.
    Grabenwöger M; Fitzal F; Sider J; Csekö C; Bergmeister H; Schima H; Husinsky W; Böck P; Wolner E
    Ann Thorac Surg; 1998 Dec; 66(6 Suppl):S110-4. PubMed ID: 9930428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Newly designed compliant hierarchic hybrid vascular grafts wrapped with a microprocessed elastomeric film--I: Fabrication procedure and compliance matching.
    Matsuda T; He H
    Cell Transplant; 2002; 11(1):67-74. PubMed ID: 12095222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Penetrating micropores increase patency and achieve extensive endothelialization in small diameter polymer skin coated vascular grafts.
    Okoshi T; Soldani G; Goddard M; Galletti PM
    ASAIO J; 1996; 42(5):M398-401. PubMed ID: 8944915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new stent graft. With thin walled controlled micropored polymer covering.
    Nishi S; Nakayama Y; Ueda H; Ishikawa M; Matsuda T
    Interv Neuroradiol; 2000 Nov; 6 Suppl 1(Suppl 1):175-80. PubMed ID: 20667243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pore size, tissue ingrowth, and endothelialization of small-diameter microporous polyurethane vascular prostheses.
    Zhang Z; Wang Z; Liu S; Kodama M
    Biomaterials; 2004 Jan; 25(1):177-87. PubMed ID: 14580921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental studies on application of small-caliber vascular prosthesis produced by polyurethane.
    Miyamoto K; Sugimoto T; Okada M; Maeda S
    Ann Thorac Cardiovasc Surg; 1999 Jun; 5(3):174-81. PubMed ID: 10413764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo comparison of replamineform, Silastic, and bioelectric polyurethane arterial grafts.
    Hiratzka LF; Goeken JA; White RA; Wright CB
    Arch Surg; 1979 Jun; 114(6):698-702. PubMed ID: 454153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Very small-diameter polyurethane vascular prostheses with rapid endothelialization for coronary artery bypass grafting.
    Okoshi T; Soldani G; Goddard M; Galletti PM
    J Thorac Cardiovasc Surg; 1993 May; 105(5):791-5. PubMed ID: 8487558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.