These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8731226)

  • 41. Information processing in noisy burster models of sensory neurons.
    Liepelt S; Freund JA; Schimansky-Geier L; Neiman A; Russell DF
    J Theor Biol; 2005 Nov; 237(1):30-40. PubMed ID: 15935388
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of difference frequency on electrocommunication: chirp production and encoding in a species of weakly electric fish, Apteronotus leptorhynchus.
    Hupé GJ; Lewis JE; Benda J
    J Physiol Paris; 2008; 102(4-6):164-72. PubMed ID: 18984046
    [TBL] [Abstract][Full Text] [Related]  

  • 43. From the Schnauzenorgan to the back: morphological comparison of mormyromast electroreceptor organs at different skin regions of Gnathonemus petersii.
    Amey-Özel M; Hollmann M; von der Emde G
    J Morphol; 2012 Jun; 273(6):629-38. PubMed ID: 22234965
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regenerative outgrowth and distribution of the electroreceptive nerve fibers in the catfish Kryptopterus.
    Roth A
    J Comp Neurol; 1993 Feb; 328(4):473-84. PubMed ID: 8429130
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The neuroethology of electrocommunication: how signal background influences sensory encoding and behaviour in Apteronotus leptorhynchus.
    Walz H; Hupé GJ; Benda J; Lewis JE
    J Physiol Paris; 2013; 107(1-2):13-25. PubMed ID: 22981958
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coding of information in models of tuberous electroreceptors.
    St-Hilaire M; Longtin A
    Math Biosci; 2004; 188():157-74. PubMed ID: 14766100
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Correlating gamma-aminobutyric acidergic circuits and sensory function in the electrosensory lateral line lobe of a gymnotiform fish.
    Maler L; Mugnaini E
    J Comp Neurol; 1994 Jul; 345(2):224-52. PubMed ID: 7523460
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Na+ channel accumulation on axolemma of afferent endings in nerve end neuromas in Apteronotus.
    Devor M; Keller CH; Deerinck TJ; Levinson SR; Ellisman MH
    Neurosci Lett; 1989 Jul; 102(2-3):149-54. PubMed ID: 2554205
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Train signals for electric fish.
    Maler L
    Nature; 1996 Dec; 384(6609):517-8. PubMed ID: 8955265
    [No Abstract]   [Full Text] [Related]  

  • 50. The emergence of tuning in newly generated tuberous electroreceptors.
    Zakon HH
    J Neurosci; 1986 Nov; 6(11):3297-308. PubMed ID: 3772432
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Encoding electric signals by Gymnotus omarorum: heuristic modeling of tuberous electroreceptor organs.
    Cilleruelo ER; Caputi AA
    Brain Res; 2012 Jan; 1434():102-14. PubMed ID: 21835395
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Measuring direction in the coupling of biological oscillators: a case study for electroreceptors of paddlefish.
    Brea J; Russell DF; Neiman AB
    Chaos; 2006 Jun; 16(2):026111. PubMed ID: 16822043
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Periodic firing pattern in afferent discharges from electroreceptor organs of catfish.
    Schäfer K; Braun HA; Peters RC; Bretschneider F
    Pflugers Arch; 1995 Jan; 429(3):378-85. PubMed ID: 7761261
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The evolution and development of vertebrate lateral line electroreceptors.
    Baker CV; Modrell MS; Gillis JA
    J Exp Biol; 2013 Jul; 216(Pt 13):2515-22. PubMed ID: 23761476
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oscillatory and burst discharge across electrosensory topographic maps.
    Turner RW; Plant JR; Maler L
    J Neurophysiol; 1996 Oct; 76(4):2364-82. PubMed ID: 8899610
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrosensory maps form a substrate for the distributed and parallel control of behavioral responses in weakly electric fish.
    Heiligenberg W
    Brain Behav Evol; 1988; 31(1):6-16. PubMed ID: 3334906
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Patterning in the regeneration of electroreceptors in the fin of Kryptopterus.
    Bever MM; Borgens RB
    J Comp Neurol; 1991 Jul; 309(2):218-30. PubMed ID: 1885786
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electroreceptor mechanisms in mormyrid fish.
    Szabo T
    Neurosci Res Program Bull; 1970 Dec; 8(5):499-501. PubMed ID: 5527320
    [No Abstract]   [Full Text] [Related]  

  • 59. How do outgrowing electrosensory nerve fibers find their peripheral electroreceptor sites?
    Roth A
    Naturwissenschaften; 1994 Feb; 81(2):89-91. PubMed ID: 8145859
    [No Abstract]   [Full Text] [Related]  

  • 60. Rapid degeneration of ampullary electroreceptor organs after denervation.
    Szamier RB; Bennett MV
    J Cell Biol; 1973 Feb; 56(2):466-77. PubMed ID: 4345554
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.