These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 8733433)
1. A possible role of adenylate metabolism in human erythrocytes: simple mathematical model. Ataullakhanov FI; Komarova SV; Vitvitsky VM J Theor Biol; 1996 Mar; 179(1):75-86. PubMed ID: 8733433 [TBL] [Abstract][Full Text] [Related]
2. [Mathematical modelling of glycolysis and of adenine nucleotide metabolism of human erythrocytes. II. Simulation of adenine nucleotide breakdown following glucose depletion]. Schauer M; Heinrich R; Rapoport SM Acta Biol Med Ger; 1981; 40(12):1683-97. PubMed ID: 7345824 [TBL] [Abstract][Full Text] [Related]
3. A possible role of adenylate metabolism in human erythrocytes. 2. Adenylate metabolism is able to improve the erythrocyte volume stabilization. Ataullakhanov FI; Komarova SV; Martynov MV; Vitvitsky VM J Theor Biol; 1996 Dec; 183(3):307-16. PubMed ID: 9015452 [TBL] [Abstract][Full Text] [Related]
4. Regulation of glycolysis in human erythrocytes. The mechanism of ATP concentration stabilization. Ataullakhanov FI; Vitvitsky VM; Zhabotinsky AM; Pichugin AV; Kholodenko BN; Ehrlich LI Acta Biol Med Ger; 1981; 40(7-8):991-7. PubMed ID: 7331640 [TBL] [Abstract][Full Text] [Related]
5. [Energy-dependent processes and metabolism of adenylates in human erythrocytes]. Ataullakhanov FI; Vitvitskiĭ VM; Komarova SV; Mosharov EV Biokhimiia; 1996 Feb; 61(2):266-74. PubMed ID: 8717495 [TBL] [Abstract][Full Text] [Related]
6. Mathematical models of metabolic systems: general principles and control of glycolysis and membrane transport in erythrocytes. Heinrich R Biomed Biochim Acta; 1985; 44(6):913-27. PubMed ID: 2931078 [TBL] [Abstract][Full Text] [Related]
7. [Mathematical modelling of glycolysis and adenine nucleotide metabolism of human erythrocytes. I. Reaction-kinetic statements, analysis of in vivo state and determination of starting conditions for in vitro experiments]. Schauer M; Heinrich R; Rapoport SM Acta Biol Med Ger; 1981; 40(12):1659-82. PubMed ID: 6285649 [TBL] [Abstract][Full Text] [Related]
8. A kinetic model for the interaction of energy metabolism and osmotic states of human erythrocytes. Analysis of the stationary "in vivo" state and of time dependent variations under blood preservation conditions. Werner A; Heinrich R Biomed Biochim Acta; 1985; 44(2):185-212. PubMed ID: 4004830 [TBL] [Abstract][Full Text] [Related]
9. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: computer simulation and metabolic control analysis. Mulquiney PJ; Kuchel PW Biochem J; 1999 Sep; 342 Pt 3(Pt 3):597-604. PubMed ID: 10477270 [TBL] [Abstract][Full Text] [Related]
10. [Effect of glycolysis on the metabolism of adenylates in human erythrocytes]. Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Pichugin AV; Pomazanov VV Biokhimiia; 1984 Jan; 49(1):104-10. PubMed ID: 6704444 [TBL] [Abstract][Full Text] [Related]
11. [Adenine nucleotides and adenylate anergy charge in erythrocytes in psoriasis]. Kosenko EA; Kaminskiĭ IuG; Goncharenko MS Vopr Med Khim; 1987; 33(6):37-41. PubMed ID: 2833030 [TBL] [Abstract][Full Text] [Related]
12. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
13. [Mathematical model for energy metabolism in erythrocytes. Independence of scaled glycolytic characteristics of individual features of the donors]. Ataullakhanov FI; Buravtsev VN; Vitvitskiĭ VM; Dibrov BF; Zhabotinskiĭ AM Biokhimiia; 1980 Jul; 45(7):1267-73. PubMed ID: 6452178 [TBL] [Abstract][Full Text] [Related]
14. [The role of cAMP in the energy metabolism of human erythrocytes]. Mojsilović L; Zivković R; Kostić M Bilt Hematol Transfuz; 1981; 9(1-3):53-9. PubMed ID: 6299268 [TBL] [Abstract][Full Text] [Related]
15. [Regulation of erythrocyte energy metabolism. Dependence of glycolysis characteristics on donor individual parameters]. Kholodenko BN; Dibrov BF; Zhabotinskiĭ AM Biofizika; 1981; 26(3):501-6. PubMed ID: 6455164 [TBL] [Abstract][Full Text] [Related]
16. Purine metabolism of human erythrocytes during storage and physiological conditions. de Verdier CH; Ericson A; Niklasson F; Groth T Acta Biol Med Ger; 1981; 40(4-5):677-82. PubMed ID: 7315114 [TBL] [Abstract][Full Text] [Related]
17. Cyclic AMP stimulates the cyclic GMP egression pump in human erythrocytes: effects of probenecid, verapamil, progesterone, theophylline, IBMX, forskolin, and cyclic AMP on cyclic GMP uptake and association to inside-out vesicles. Schultz C; Vaskinn S; Kildalsen H; Sager G Biochemistry; 1998 Jan; 37(4):1161-6. PubMed ID: 9454609 [TBL] [Abstract][Full Text] [Related]
18. Calcium activates erythrocyte AMP deaminase [isoform E (AMPD3)] through a protein-protein interaction between calmodulin and the N-terminal domain of the AMPD3 polypeptide. Mahnke DK; Sabina RL Biochemistry; 2005 Apr; 44(14):5551-9. PubMed ID: 15807549 [TBL] [Abstract][Full Text] [Related]
19. [Biochemical individuality of humans and invariants of regulation. Scale invariance of the characteristic of glycolysis in erythrocytes]. Kholodenko BN Biofizika; 1980; 25(2):250-7. PubMed ID: 7370336 [TBL] [Abstract][Full Text] [Related]
20. A comprehensive model of human erythrocyte metabolism: extensions to include pH effects. Lee ID; Palsson BO Biomed Biochim Acta; 1990; 49(8-9):771-89. PubMed ID: 2082921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]