These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
377 related articles for article (PubMed ID: 8733582)
1. Two types of ATP-sensitive potassium channels in rat portal vein smooth muscle cells. Zhang HL; Bolton TB Br J Pharmacol; 1996 May; 118(1):105-14. PubMed ID: 8733582 [TBL] [Abstract][Full Text] [Related]
2. Activation by intracellular GDP, metabolic inhibition and pinacidil of a glibenclamide-sensitive K-channel in smooth muscle cells of rat mesenteric artery. Zhang H; Bolton TB Br J Pharmacol; 1995 Feb; 114(3):662-72. PubMed ID: 7735693 [TBL] [Abstract][Full Text] [Related]
3. Regulation of ATP-sensitive K+ channels by ATP and nucleotide diphosphate in rabbit portal vein. Kamouchi M; Kitamura K Am J Physiol; 1994 May; 266(5 Pt 2):H1687-98. PubMed ID: 8203568 [TBL] [Abstract][Full Text] [Related]
4. Effects of levcromakalim and nucleoside diphosphates on glibenclamide-sensitive K+ channels in pig urethral myocytes. Teramoto N; McMurray G; Brading AF Br J Pharmacol; 1997 Apr; 120(7):1229-40. PubMed ID: 9105697 [TBL] [Abstract][Full Text] [Related]
5. Potassium channel modulation in rat portal vein by ATP depletion: a comparison with the effects of levcromakalim (BRL 38227). Noack T; Edwards G; Deitmer P; Weston AH Br J Pharmacol; 1992 Dec; 107(4):945-55. PubMed ID: 1467843 [TBL] [Abstract][Full Text] [Related]
6. Single channel and whole-cell K-currents evoked by levcromakalim in smooth muscle cells from the rabbit portal vein. Beech DJ; Zhang H; Nakao K; Bolton TB Br J Pharmacol; 1993 Oct; 110(2):583-90. PubMed ID: 8242233 [TBL] [Abstract][Full Text] [Related]
7. Guanosine diphosphate activates an adenosine 5'-triphosphate-sensitive K+ channel in the rabbit portal vein. Kajioka S; Kitamura K; Kuriyama H J Physiol; 1991 Dec; 444():397-418. PubMed ID: 1822556 [TBL] [Abstract][Full Text] [Related]
8. Potassium channel openers act through an activation of ATP-sensitive K+ channels in guinea-pig cardiac myocytes. Escande D; Thuringer D; Le Guern S; Courteix J; Laville M; Cavero I Pflugers Arch; 1989 Sep; 414(6):669-75. PubMed ID: 2510125 [TBL] [Abstract][Full Text] [Related]
9. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder. Bonev AD; Nelson MT Am J Physiol; 1993 May; 264(5 Pt 1):C1190-200. PubMed ID: 8498480 [TBL] [Abstract][Full Text] [Related]
10. Effects of K+ channel agonists cromakalim and pinacidil on rat basilar artery smooth muscle cells are mediated by Ca(++)-activated K+ channels. Stockbridge N; Zhang H; Weir B Biochem Biophys Res Commun; 1991 Nov; 181(1):172-8. PubMed ID: 1958186 [TBL] [Abstract][Full Text] [Related]
11. Potassium channels and human corporeal smooth muscle cell tone: diabetes and relaxation of human corpus cavernosum smooth muscle by adenosine triphosphate sensitive potassium channel openers. Venkateswarlu K; Giraldi A; Zhao W; Wang HZ; Melman A; Spektor M; Christ GJ J Urol; 2002 Jul; 168(1):355-61. PubMed ID: 12050569 [TBL] [Abstract][Full Text] [Related]
12. Pharmacological properties of ATP-sensitive K+ channels in mammalian skeletal muscle cells. Allard B; Lazdunski M Eur J Pharmacol; 1993 Jun; 236(3):419-26. PubMed ID: 8359200 [TBL] [Abstract][Full Text] [Related]
13. Lack of effect of potassium channel openers on ATP-modulated potassium channels recorded from rat ventromedial hypothalamic neurones. Sellers AJ; Boden PR; Ashford ML Br J Pharmacol; 1992 Dec; 107(4):1068-74. PubMed ID: 1467829 [TBL] [Abstract][Full Text] [Related]
14. Identification and properties of an ATP-sensitive K+ current in rabbit sino-atrial node pacemaker cells. Han X; Light PE; Giles WR; French RJ J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):337-50. PubMed ID: 8821133 [TBL] [Abstract][Full Text] [Related]
15. Properties and pharmacological modification of ATP-sensitive K(+) channels in cat tracheal myocytes. Teramoto N; Nakashima T; Ito Y Br J Pharmacol; 2000 Jun; 130(3):625-35. PubMed ID: 10821791 [TBL] [Abstract][Full Text] [Related]
16. Potassium channel modulation: a new drug principle for regulation of smooth muscle contractility. Studies on isolated airways and arteries. Nielsen-Kudsk JE Dan Med Bull; 1996 Dec; 43(5):429-47. PubMed ID: 8960816 [TBL] [Abstract][Full Text] [Related]
17. Levcromakalim may induce a voltage-independent K-current in rat portal veins by modifying the gating properties of the delayed rectifier. Edwards G; Ibbotson T; Weston AH Br J Pharmacol; 1993 Nov; 110(3):1037-48. PubMed ID: 8298792 [TBL] [Abstract][Full Text] [Related]
18. Modulation of K+ channels by intracellular ATP in human neocortical neurons. Jiang C; Haddad GG J Neurophysiol; 1997 Jan; 77(1):93-102. PubMed ID: 9120601 [TBL] [Abstract][Full Text] [Related]
19. Modulation of rabbit aortic Ca(2+)-activated K+ channels by pinacidil, cromakalim, and glibenclamide. Gelband GH; McCullough JR Am J Physiol; 1993 May; 264(5 Pt 1):C1119-27. PubMed ID: 8498475 [TBL] [Abstract][Full Text] [Related]
20. Basal activation of ATP-sensitive potassium channels in murine colonic smooth muscle cell. Koh SD; Bradley KK; Rae MG; Keef KD; Horowitz B; Sanders KM Biophys J; 1998 Oct; 75(4):1793-800. PubMed ID: 9746521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]