These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 8734071)
1. Evaluation of slipperiness of catheter surfaces. Marmieri G; Pettenati M; Cassinelli C; Morra M J Biomed Mater Res; 1996; 33(1):29-33. PubMed ID: 8734071 [TBL] [Abstract][Full Text] [Related]
2. Chitosan/poly(vinyl alcohol) blending hydrogel coating improves the surface characteristics of segmented polyurethane urethral catheters. Yang SH; Lee YS; Lin FH; Yang JM; Chen KS J Biomed Mater Res B Appl Biomater; 2007 Nov; 83(2):304-13. PubMed ID: 17410571 [TBL] [Abstract][Full Text] [Related]
3. Surface morphology and friction coefficient of various types of Foley catheter. Graiver D; Durall RL; Okada T Biomaterials; 1993 May; 14(6):465-9. PubMed ID: 8507794 [TBL] [Abstract][Full Text] [Related]
4. A catheter friction tester using balance sensor: Combined evaluation of the effects of mechanical properties of tubing materials and surface coatings. Røn T; Jacobsen KP; Lee S J Mech Behav Biomed Mater; 2018 Aug; 84():12-21. PubMed ID: 29727796 [TBL] [Abstract][Full Text] [Related]
5. Use of in vitro and haptic assessments in the characterisation of surface lubricity. Irwin NJ; McCoy CP; McCullough AR; Corbett DJ Proc Inst Mech Eng H; 2019 Jan; 233(1):84-90. PubMed ID: 29393009 [TBL] [Abstract][Full Text] [Related]
6. Bioinspired lubricating films of cellulose nanofibrils and hyaluronic acid. Valle-Delgado JJ; Johansson LS; Österberg M Colloids Surf B Biointerfaces; 2016 Feb; 138():86-93. PubMed ID: 26674836 [TBL] [Abstract][Full Text] [Related]
7. Relationship between biomedical catheter surface properties and lubricity as determined using textural analysis and multiple regression analysis. Jones DS; Garvin CP; Gorman SP Biomaterials; 2004; 25(7-8):1421-8. PubMed ID: 14643617 [TBL] [Abstract][Full Text] [Related]
8. Structural-mechanical and antibacterial properties of a soft elastic polyurethane surface after plasma immersion N2(+) implantation. Morozov IA; Mamaev AS; Osorgina IV; Lemkina LM; Korobov VP; Belyaev AY; Porozova SE; Sherban MG Mater Sci Eng C Mater Biol Appl; 2016 May; 62():242-8. PubMed ID: 26952420 [TBL] [Abstract][Full Text] [Related]
9. Low-friction hydrophilic surface for medical devices. Nagaoka S; Akashi R Biomaterials; 1990 Aug; 11(6):419-24. PubMed ID: 2207232 [TBL] [Abstract][Full Text] [Related]
10. Surface modification of polyurethane films by plasma and ultraviolet light to improve haemocompatibility for artificial heart valves. Alves P; Cardoso R; Correia TR; Antunes BP; Correia IJ; Ferreira P Colloids Surf B Biointerfaces; 2014 Jan; 113():25-32. PubMed ID: 24060927 [TBL] [Abstract][Full Text] [Related]
12. Intraoral lubrication of PRP-1, statherin and mucin as studied by AFM. Hahn Berg IC; Lindh L; Arnebrant T Biofouling; 2004 Feb; 20(1):65-70. PubMed ID: 15079894 [TBL] [Abstract][Full Text] [Related]
13. Customized vascular catheters for rodents. Brown DF; Burr RE Lab Anim Sci; 1985 Oct; 35(5):515-6. PubMed ID: 4057949 [TBL] [Abstract][Full Text] [Related]
14. Thermoplastic polyurethane--the material used for the Erlanger silver catheter. Hentschel T; Münstedt H Infection; 1999; 27 Suppl 1():S43-5. PubMed ID: 10379443 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of hydrated polyurethane biomaterials: Surface microphase restructuring, protein activity and platelet adhesion. Xu LC; Runt J; Siedlecki CA Acta Biomater; 2010 Jun; 6(6):1938-47. PubMed ID: 19948255 [TBL] [Abstract][Full Text] [Related]
16. Adsorption and lubricating properties of poly(l-lysine)-graft-poly(ethylene glycol) on human-hair surfaces. Lee S; Zürcher S; Dorcier A; Luengo GS; Spencer ND ACS Appl Mater Interfaces; 2009 Sep; 1(9):1938-45. PubMed ID: 20355818 [TBL] [Abstract][Full Text] [Related]
17. Biomembrane mimetic polymer poly (2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) at the interface of polyurethane surfaces. Lee I; Kobayashi K; Sun HY; Takatani S; Zhong LG J Biomed Mater Res A; 2007 Aug; 82(2):316-22. PubMed ID: 17295222 [TBL] [Abstract][Full Text] [Related]
18. Effect of phospholipidic boundary lubrication in rigid and compliant hemiarthroplasty models. Foy JR; Williams PF; Powell GL; Ishihara K; Nakabayashi N; LaBerge M Proc Inst Mech Eng H; 1999; 213(1):5-18. PubMed ID: 10087900 [TBL] [Abstract][Full Text] [Related]
19. Neutrophil chemotaxis on silicone and polyurethane surfaces. Indorf AS; Poate T; Sherertz RJ J Infect Dis; 1999 Nov; 180(5):1603-7. PubMed ID: 10515822 [TBL] [Abstract][Full Text] [Related]
20. Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces. Xu LC; Siedlecki CA Biomed Mater; 2014 Jun; 9(3):035003. PubMed ID: 24687453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]