These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 8734295)

  • 21. Substrate discrimination by formamidopyrimidine-DNA glycosylase: distinguishing interactions within the active site.
    Perlow-Poehnelt RA; Zharkov DO; Grollman AP; Broyde S
    Biochemistry; 2004 Dec; 43(51):16092-105. PubMed ID: 15610004
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alternative nucleotide incision repair pathway for oxidative DNA damage.
    Ischenko AA; Saparbaev MK
    Nature; 2002 Jan; 415(6868):183-7. PubMed ID: 11805838
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of enzymatic probes of oxidative and nitrosative DNA damage caused by reactive nitrogen species.
    Dong M; Vongchampa V; Gingipalli L; Cloutier JF; Kow YW; O'Connor T; Dedon PC
    Mutat Res; 2006 Feb; 594(1-2):120-34. PubMed ID: 16274707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Excision of imidazole ring-opened N7-hydroxyethylguanine from chloroethylnitrosourea-treated DNA by Escherichia coli formamidopyrimidine-DNA glycosylase.
    Laval J; Lopès F; Madelmont JC; Godenèche D; Meyniel G; Habraken Y; O'Connor TR; Boiteux S
    IARC Sci Publ; 1991; (105):412-6. PubMed ID: 1855891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increased resistance to N,N',N"-triethylenethiophosphoramide (thiotepa) in cells expressing the Escherichia coli formamidopyrimidine-DNA glycosylase.
    Gill RD; Cussac C; Souhami RL; Laval F
    Cancer Res; 1996 Aug; 56(16):3721-4. PubMed ID: 8706014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Repair of oxidative DNA damage: mechanisms and functions.
    Lu AL; Li X; Gu Y; Wright PM; Chang DY
    Cell Biochem Biophys; 2001; 35(2):141-70. PubMed ID: 11892789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Oxidative damage of mitochondrial DNA: the result or consequence of enhanced generation of reactive oxygen species].
    Płoszaj T; Robaszkiewicz A; Witas H
    Postepy Biochem; 2010; 56(2):139-46. PubMed ID: 20873108
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Properties and biological functions of the NTH and FPG proteins of Escherichia coli: two DNA glycosylases that repair oxidative damage in DNA.
    Boiteux S
    J Photochem Photobiol B; 1993 Jul; 19(2):87-96. PubMed ID: 8377077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct repair activities of human 7,8-dihydro-8-oxoguanine DNA glycosylase and formamidopyrimidine DNA glycosylase for formamidopyrimidine and 7,8-dihydro-8-oxoguanine.
    Asagoshi K; Yamada T; Terato H; Ohyama Y; Monden Y; Arai T; Nishimura S; Aburatani H; Lindahl T; Ide H
    J Biol Chem; 2000 Feb; 275(7):4956-64. PubMed ID: 10671534
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3'- and 5'-strand cleavage reactions catalyzed by the Fpg protein from Escherichia coli occur via successive beta- and delta-elimination mechanisms, respectively.
    Bhagwat M; Gerlt JA
    Biochemistry; 1996 Jan; 35(2):659-65. PubMed ID: 8555240
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antimutagenic role of base-excision repair enzymes upon free radical-induced DNA damage.
    Laval J; Jurado J; Saparbaev M; Sidorkina O
    Mutat Res; 1998 Jun; 402(1-2):93-102. PubMed ID: 9675252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accelerated repair and reduced mutagenicity of oxidative DNA damage in human bladder cells expressing the E. coli FPG protein.
    Ropolo M; Geroldi A; Degan P; Andreotti V; Zupo S; Poggi A; Reed A; Kelley MR; Frosina G
    Int J Cancer; 2006 Apr; 118(7):1628-34. PubMed ID: 16217765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of Escherichia coli 8-oxoguanine endonuclease.
    Lee YS; Chung MH
    Exp Mol Med; 2000 Sep; 32(3):155-60. PubMed ID: 11048647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Excision of the imidazole ring-opened form of N-2-aminofluorene-C(8)-guanine adduct in poly(dG-dC) by Escherichia coli formamidopyrimidine-DNA glycosylase.
    Boiteux S; Bichara M; Fuchs RP; Laval J
    Carcinogenesis; 1989 Oct; 10(10):1905-9. PubMed ID: 2676225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physical association of the 2,6-diamino-4-hydroxy-5N-formamidopyrimidine-DNA glycosylase of Escherichia coli and an activity nicking DNA at apurinic/apyrimidinic sites.
    O'Connor TR; Laval J
    Proc Natl Acad Sci U S A; 1989 Jul; 86(14):5222-6. PubMed ID: 2664776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Repair of oxidized purines and damaged pyrimidines by E. coli Fpg protein: different roles of proline 2 and lysine 57 residues.
    Saparbaev M; Sidorkina OM; Jurado J; Privezentzev CV; Greenberg MM; Laval J
    Environ Mol Mutagen; 2002; 39(1):10-7. PubMed ID: 11813291
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidative stress and oxidative damage in chemical carcinogenesis.
    Klaunig JE; Wang Z; Pu X; Zhou S
    Toxicol Appl Pharmacol; 2011 Jul; 254(2):86-99. PubMed ID: 21296097
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Substrate specificity of the Escherichia coli Fpg protein (formamidopyrimidine-DNA glycosylase): excision of purine lesions in DNA produced by ionizing radiation or photosensitization.
    Boiteux S; Gajewski E; Laval J; Dizdaroglu M
    Biochemistry; 1992 Jan; 31(1):106-10. PubMed ID: 1731864
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensitive analysis of oxidative DNA damage in mammalian cells: use of the bacterial Fpg protein in combination with alkaline unwinding.
    Hartwig A; Dally H; Schlepegrell R
    Toxicol Lett; 1996 Nov; 88(1-3):85-90. PubMed ID: 8920721
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Oxidative DNA damage--analysis and clinical significance].
    Zaremba T; Oliński R
    Postepy Biochem; 2010; 56(2):124-38. PubMed ID: 20873107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.