These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
447 related articles for article (PubMed ID: 8734295)
41. The role of yeast DNA 3'-phosphatase Tpp1 and rad1/Rad10 endonuclease in processing spontaneous and induced base lesions. Karumbati AS; Deshpande RA; Jilani A; Vance JR; Ramotar D; Wilson TE J Biol Chem; 2003 Aug; 278(33):31434-43. PubMed ID: 12783866 [TBL] [Abstract][Full Text] [Related]
42. Increased resistance to oxidative DNA damage of trabecular meshwork cells by E. coli FPG gene transfection. Foresta M; Frosina G; Sacca SC; Cartiglia C; Longobardi M; Izzotti A Free Radic Res; 2011 Jul; 45(7):751-8. PubMed ID: 21561236 [TBL] [Abstract][Full Text] [Related]
43. Human NEIL3 is mainly a monofunctional DNA glycosylase removing spiroimindiohydantoin and guanidinohydantoin. Krokeide SZ; Laerdahl JK; Salah M; Luna L; Cederkvist FH; Fleming AM; Burrows CJ; Dalhus B; Bjørås M DNA Repair (Amst); 2013 Dec; 12(12):1159-64. PubMed ID: 23755964 [TBL] [Abstract][Full Text] [Related]
44. Effect of single mutations on the specificity of Escherichia coli FPG protein for excision of purine lesions from DNA damaged by free radicals. Sidorkina O; Dizdaroglu M; Laval J Free Radic Biol Med; 2001 Sep; 31(6):816-23. PubMed ID: 11557320 [TBL] [Abstract][Full Text] [Related]
45. Defective repair of 5-hydroxy-2'-deoxycytidine in Cockayne syndrome cells and its complementation by Escherichia coli formamidopyrimidine DNA glycosylase and endonuclease III. Foresta M; Ropolo M; Degan P; Pettinati I; Kow YW; Damonte G; Poggi A; Frosina G Free Radic Biol Med; 2010 Mar; 48(5):681-90. PubMed ID: 20026203 [TBL] [Abstract][Full Text] [Related]
46. Reduction of the toxicity and mutagenicity of aziridine in mammalian cells harboring the Escherichia coli fpg gene. Cussac C; Laval F Nucleic Acids Res; 1996 May; 24(9):1742-6. PubMed ID: 8649994 [TBL] [Abstract][Full Text] [Related]
47. Expression of the Fpg protein of Escherichia coli in Saccharomyces cerevisiae: effects on spontaneous mutagenesis and sensitivity to oxidative DNA damage. Guibourt N; Boiteux S Biochimie; 2000 Jan; 82(1):59-64. PubMed ID: 10717388 [TBL] [Abstract][Full Text] [Related]
48. DNA substrates containing defined oxidative base lesions and their application to study substrate specificities of base excision repair enzymes. Ide H Prog Nucleic Acid Res Mol Biol; 2001; 68():207-21. PubMed ID: 11554298 [TBL] [Abstract][Full Text] [Related]
49. DNA oxidation products determined with repair endonucleases in mammalian cells: types, basal levels and influence of cell proliferation. Pflaum M; Will O; Mahler HC; Epe B Free Radic Res; 1998 Dec; 29(6):585-94. PubMed ID: 10098463 [TBL] [Abstract][Full Text] [Related]
50. Age-associated neurodegeneration and oxidative damage to lipids, proteins and DNA. Radak Z; Zhao Z; Goto S; Koltai E Mol Aspects Med; 2011 Aug; 32(4-6):305-15. PubMed ID: 22020115 [TBL] [Abstract][Full Text] [Related]
51. Excision of formamidopyrimidine lesions by endonucleases III and VIII is not a major DNA repair pathway in Escherichia coli. Wiederholt CJ; Patro JN; Jiang YL; Haraguchi K; Greenberg MM Nucleic Acids Res; 2005; 33(10):3331-8. PubMed ID: 15944451 [TBL] [Abstract][Full Text] [Related]
52. Repair of 8-oxoguanine in Saccharomyces cerevisiae: interplay of DNA repair and replication mechanisms. Boiteux S; Gellon L; Guibourt N Free Radic Biol Med; 2002 Jun; 32(12):1244-53. PubMed ID: 12057762 [TBL] [Abstract][Full Text] [Related]
53. Biological significance of the defense mechanisms against oxidative damage in nucleic acids caused by reactive oxygen species: from mitochondria to nuclei. Nakabeppu Y; Tsuchimoto D; Ichinoe A; Ohno M; Ide Y; Hirano S; Yoshimura D; Tominaga Y; Furuichi M; Sakumi K Ann N Y Acad Sci; 2004 Apr; 1011():101-11. PubMed ID: 15126288 [TBL] [Abstract][Full Text] [Related]
54. Fpg protein of Escherichia coli is a zinc finger protein whose cysteine residues have a structural and/or functional role. O'Connor TR; Graves RJ; de Murcia G; Castaing B; Laval J J Biol Chem; 1993 Apr; 268(12):9063-70. PubMed ID: 8473347 [TBL] [Abstract][Full Text] [Related]
55. Age-related and tissue-specific accumulation of oxidative DNA base damage in 7,8-dihydro-8-oxoguanine-DNA glycosylase (Ogg1) deficient mice. Osterod M; Hollenbach S; Hengstler JG; Barnes DE; Lindahl T; Epe B Carcinogenesis; 2001 Sep; 22(9):1459-63. PubMed ID: 11532868 [TBL] [Abstract][Full Text] [Related]
56. [Oxidative damage repair of DNA in prokaryotes]. Zastawny TH Postepy Biochem; 1996; 42(1):31-41. PubMed ID: 8657653 [No Abstract] [Full Text] [Related]
57. Catalytic mechanism of Escherichia coli endonuclease VIII: roles of the intercalation loop and the zinc finger. Kropachev KY; Zharkov DO; Grollman AP Biochemistry; 2006 Oct; 45(39):12039-49. PubMed ID: 17002303 [TBL] [Abstract][Full Text] [Related]
58. One-electron oxidation of plasmid DNA by selenium(V) species. Milligan JR; Aguilera JA; Paglinawan RA; Ward JF Int J Radiat Biol; 2002 May; 78(5):359-74. PubMed ID: 12020427 [TBL] [Abstract][Full Text] [Related]
59. Multiprobe RNase protection assay analysis of mRNA levels for the Escherichia coli oxidative DNA glycosylase genes under conditions of oxidative stress. Gifford CM; Blaisdell JO; Wallace SS J Bacteriol; 2000 Oct; 182(19):5416-24. PubMed ID: 10986244 [TBL] [Abstract][Full Text] [Related]
60. Marathon running alters the DNA base excision repair in human skeletal muscle. Radák Z; Apor P; Pucsok J; Berkes I; Ogonovszky H; Pavlik G; Nakamoto H; Goto S Life Sci; 2003 Feb; 72(14):1627-33. PubMed ID: 12551751 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]