These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 8735280)
1. Ligand-dependent interaction of nuclear receptors with potential transcriptional intermediary factors (mediators). Le Douarin B; vom Baur E; Zechel C; Heery D; Heine M; Vivat V; Gronemeyer H; Losson R; Chambon P Philos Trans R Soc Lond B Biol Sci; 1996 Apr; 351(1339):569-78. PubMed ID: 8735280 [TBL] [Abstract][Full Text] [Related]
2. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. vom Baur E; Zechel C; Heery D; Heine MJ; Garnier JM; Vivat V; Le Douarin B; Gronemeyer H; Chambon P; Losson R EMBO J; 1996 Jan; 15(1):110-24. PubMed ID: 8598193 [TBL] [Abstract][Full Text] [Related]
3. A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. Le Douarin B; Nielsen AL; Garnier JM; Ichinose H; Jeanmougin F; Losson R; Chambon P EMBO J; 1996 Dec; 15(23):6701-15. PubMed ID: 8978696 [TBL] [Abstract][Full Text] [Related]
4. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. Le Douarin B; Zechel C; Garnier JM; Lutz Y; Tora L; Pierrat P; Heery D; Gronemeyer H; Chambon P; Losson R EMBO J; 1995 May; 14(9):2020-33. PubMed ID: 7744009 [TBL] [Abstract][Full Text] [Related]
5. Two distinct nuclear receptor interaction domains in NSD1, a novel SET protein that exhibits characteristics of both corepressors and coactivators. Huang N; vom Baur E; Garnier JM; Lerouge T; Vonesch JL; Lutz Y; Chambon P; Losson R EMBO J; 1998 Jun; 17(12):3398-412. PubMed ID: 9628876 [TBL] [Abstract][Full Text] [Related]
6. Analysis of the functional role of steroid receptor coactivator-1 in ligand-induced transactivation by thyroid hormone receptor. Jeyakumar M; Tanen MR; Bagchi MK Mol Endocrinol; 1997 Jun; 11(6):755-67. PubMed ID: 9171239 [TBL] [Abstract][Full Text] [Related]
7. Retinoid X receptor isotype identity directs human vitamin D receptor heterodimer transactivation from the 24-hydroxylase vitamin D response elements in yeast. Kephart DD; Walfish PG; DeLuca H; Butt TR Mol Endocrinol; 1996 Apr; 10(4):408-19. PubMed ID: 8721985 [TBL] [Abstract][Full Text] [Related]
8. Role of the essential yeast protein PSU1 in p6anscriptional enhancement by the ligand-dependent activation function AF-2 of nuclear receptors. Gaudon C; Chambon P; Losson R EMBO J; 1999 Apr; 18(8):2229-40. PubMed ID: 10205176 [TBL] [Abstract][Full Text] [Related]
9. A regulatory role for RIP140 in nuclear receptor activation. Treuter E; Albrektsen T; Johansson L; Leers J; Gustafsson JA Mol Endocrinol; 1998 Jun; 12(6):864-81. PubMed ID: 9626662 [TBL] [Abstract][Full Text] [Related]
10. Human TAF(II)135 potentiates transcriptional activation by the AF-2s of the retinoic acid, vitamin D3, and thyroid hormone receptors in mammalian cells. Mengus G; May M; Carré L; Chambon P; Davidson I Genes Dev; 1997 Jun; 11(11):1381-95. PubMed ID: 9192867 [TBL] [Abstract][Full Text] [Related]
11. The interaction of the vitamin D receptor with nuclear receptor corepressors and coactivators. Tagami T; Lutz WH; Kumar R; Jameson JL Biochem Biophys Res Commun; 1998 Dec; 253(2):358-63. PubMed ID: 9878542 [TBL] [Abstract][Full Text] [Related]
12. Natural vitamin D3 response elements formed by inverted palindromes: polarity-directed ligand sensitivity of vitamin D3 receptor-retinoid X receptor heterodimer-mediated transactivation. Schräder M; Nayeri S; Kahlen JP; Müller KM; Carlberg C Mol Cell Biol; 1995 Mar; 15(3):1154-61. PubMed ID: 7862109 [TBL] [Abstract][Full Text] [Related]
13. Thyroid hormone receptor does not heterodimerize with the vitamin D receptor but represses vitamin D receptor-mediated transactivation. Raval-Pandya M; Freedman LP; Li H; Christakos S Mol Endocrinol; 1998 Sep; 12(9):1367-79. PubMed ID: 9731705 [TBL] [Abstract][Full Text] [Related]
14. Estrogen receptor, a common interaction partner for a subset of nuclear receptors. Lee SK; Choi HS; Song MR; Lee MO; Lee JW Mol Endocrinol; 1998 Aug; 12(8):1184-92. PubMed ID: 9717844 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional silencing by unliganded thyroid hormone receptor beta requires a soluble corepressor that interacts with the ligand-binding domain of the receptor. Tong GX; Jeyakumar M; Tanen MR; Bagchi MK Mol Cell Biol; 1996 May; 16(5):1909-20. PubMed ID: 8628257 [TBL] [Abstract][Full Text] [Related]
16. Vitamin D receptor displays DNA binding and transactivation as a heterodimer with the retinoid X receptor, but not with the thyroid hormone receptor. Thompson PD; Hsieh JC; Whitfield GK; Haussler CA; Jurutka PW; Galligan MA; Tillman JB; Spindler SR; Haussler MR J Cell Biochem; 1999 Dec; 75(3):462-80. PubMed ID: 10536369 [TBL] [Abstract][Full Text] [Related]
17. Ligand occupancy is not required for vitamin D receptor and retinoid receptor-mediated transcriptional activation. Matkovits T; Christakos S Mol Endocrinol; 1995 Feb; 9(2):232-42. PubMed ID: 7776973 [TBL] [Abstract][Full Text] [Related]
18. The yeast Ada complex mediates the ligand-dependent activation function AF-2 of retinoid X and estrogen receptors. vom Baur E; Harbers M; Um SJ; Benecke A; Chambon P; Losson R Genes Dev; 1998 May; 12(9):1278-89. PubMed ID: 9573045 [TBL] [Abstract][Full Text] [Related]
19. Nuclear receptors modulate the interaction of Sp1 and GC-rich DNA via ternary complex formation. Husmann M; Dragneva Y; Romahn E; Jehnichen P Biochem J; 2000 Dec; 352 Pt 3(Pt 3):763-72. PubMed ID: 11104684 [TBL] [Abstract][Full Text] [Related]