These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 8735387)
21. Continuous ethanol production and evaluation of yeast cell lysis and viability loss under very high gravity medium conditions. Bai FW; Chen LJ; Zhang Z; Anderson WA; Moo-Young M J Biotechnol; 2004 Jun; 110(3):287-93. PubMed ID: 15163519 [TBL] [Abstract][Full Text] [Related]
22. Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae. van Maris AJ; Bakker BM; Brandt M; Boorsma A; Teixeira de Mattos MJ; Grivell LA; Pronk JT; Blom J FEMS Yeast Res; 2001 Jul; 1(2):139-49. PubMed ID: 12702359 [TBL] [Abstract][Full Text] [Related]
23. [Continuous ethanol fermentation using self-flocculating yeast strain and bioreactor system composed of multi-stage tanks in series]. Xu TJ; Zhao XQ; Zhou YC; Bai FW Sheng Wu Gong Cheng Xue Bao; 2005 Jan; 21(1):113-7. PubMed ID: 15859339 [TBL] [Abstract][Full Text] [Related]
24. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates. Vos T; Hakkaart XD; de Hulster EA; van Maris AJ; Pronk JT; Daran-Lapujade P Microb Cell Fact; 2016 Jun; 15(1):111. PubMed ID: 27317316 [TBL] [Abstract][Full Text] [Related]
25. Effect of dilution rate and nutrients addition on the fermentative capability and synthesis of aromatic compounds of two indigenous strains of Saccharomyces cerevisiae in continuous cultures fed with Agave tequilana juice. Morán-Marroquín GA; Córdova J; Valle-Rodríguez JO; Estarrón-Espinosa M; Díaz-Montaño DM Int J Food Microbiol; 2011 Nov; 151(1):87-92. PubMed ID: 21903290 [TBL] [Abstract][Full Text] [Related]
26. Continuous ethanol production from cassava through simultaneous saccharification and fermentation by self-flocculating yeast Saccharomyces cerevisiae CHFY0321. Choi GW; Kang HW; Moon SK; Chung BW Appl Biochem Biotechnol; 2010 Mar; 160(5):1517-27. PubMed ID: 19396636 [TBL] [Abstract][Full Text] [Related]
27. Effects of growth conditions on mitochondrial morphology in Saccharomyces cerevisiae. Visser W; van Spronsen EA; Nanninga N; Pronk JT; Gijs Kuenen J; van Dijken JP Antonie Van Leeuwenhoek; 1995; 67(3):243-53. PubMed ID: 7778893 [TBL] [Abstract][Full Text] [Related]
28. Growth rate and medium composition strongly affect folate content in Saccharomyces cerevisiae. Hjortmo S; Patring J; Andlid T Int J Food Microbiol; 2008 Mar; 123(1-2):93-100. PubMed ID: 18234383 [TBL] [Abstract][Full Text] [Related]
29. Substrate inhibition kinetics of Saccharomyces cerevisiae in fed-batch cultures operated at constant glucose and maltose concentration levels. Papagianni M; Boonpooh Y; Mattey M; Kristiansen B J Ind Microbiol Biotechnol; 2007 Apr; 34(4):301-9. PubMed ID: 17211636 [TBL] [Abstract][Full Text] [Related]
30. [Effects of dilution rates on the oscillatory behaviors of a very high gravity continuous ethanol fermentation system]. Luo XP; Chen LJ; Wang F; Bai FW Sheng Wu Gong Cheng Xue Bao; 2005 Jul; 21(4):604-8. PubMed ID: 16176100 [TBL] [Abstract][Full Text] [Related]
31. Modeling threshold phenomena, metabolic pathways switches and signals in chemostat-cultivated cells: the Crabtree effect in Saccharomyces cerevisiae. Thierie J J Theor Biol; 2004 Feb; 226(4):483-501. PubMed ID: 14759654 [TBL] [Abstract][Full Text] [Related]
32. On-line evolutionary optimization of an industrial fed-batch yeast fermentation process. Yüzgeç U; Türker M; Hocalar A ISA Trans; 2009 Jan; 48(1):79-92. PubMed ID: 18849027 [TBL] [Abstract][Full Text] [Related]
33. Oxygen requirements of the food spoilage yeast Zygosaccharomyces bailii in synthetic and complex media. Rodrigues F; Côrte-Real M; Leão C; van Dijken JP; Pronk JT Appl Environ Microbiol; 2001 May; 67(5):2123-8. PubMed ID: 11319090 [TBL] [Abstract][Full Text] [Related]
34. The growth of Saccharomyces cerevisiae CBS 426 on mixtures of glucose and ethanol: a model. Bonnet JA; de Kok HE; Roels JA Antonie Van Leeuwenhoek; 1980; 46(6):565-76. PubMed ID: 7016030 [TBL] [Abstract][Full Text] [Related]
35. The use of dielectric permittivity for the control of the biomass level during biotransformations of toxic substrates in continuous culture. Markx GH; Kell DB Biotechnol Prog; 1995; 11(1):64-70. PubMed ID: 7765989 [TBL] [Abstract][Full Text] [Related]
36. Heat flux measurements for the fast monitoring of dynamic responses to glucose additions by yeasts that were subjected to different feeding regimes in continuous culture. van Kleeff BH; Kuenen JG; Heijnen JJ Biotechnol Prog; 1996; 12(4):510-8. PubMed ID: 8987477 [TBL] [Abstract][Full Text] [Related]
37. Further evidence for the existence of a bottleneck in the metabolism of Saccharomyces cerevisiae. Auberson LC; Ramseier CV; Marison IW; von Stockar U Experientia; 1989 Dec; 45(11-12):1013-8. PubMed ID: 2513218 [TBL] [Abstract][Full Text] [Related]
38. Modelling effects of high product and substrate inhibition on oscillatory behavior in continuous bioreactors. Lenbury Y; Neamvong A; Amornsamankul S; Puttapiban P Biosystems; 1999 Mar; 49(3):191-203. PubMed ID: 10193759 [TBL] [Abstract][Full Text] [Related]
39. Oscillatory metabolism of Saccharomyces cerevisiae in continuous culture. Satroutdinov AD; Kuriyama H; Kobayashi H FEMS Microbiol Lett; 1992 Nov; 77(1-3):261-7. PubMed ID: 1334018 [TBL] [Abstract][Full Text] [Related]
40. Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast. Liu CG; Hao XM; Lin YH; Bai FW Sci Rep; 2016 May; 6():25763. PubMed ID: 27161047 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]