These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 873553)

  • 1. Analysis of a network of electrically coupled neurons producing rhythmic activity in the snail Helisoma trivolvis.
    Merickel MB; Eyman ED; Kater SB
    IEEE Trans Biomed Eng; 1977 May; 24(3):277-87. PubMed ID: 873553
    [No Abstract]   [Full Text] [Related]  

  • 2. Investigation of burst generation by the electrically coupled cyberchron network in the snail Helisoma using a single-electrode voltage clamp.
    Merickel M; Gray R
    J Neurobiol; 1980; 11(1):73-102. PubMed ID: 7354323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single microelectrode analysis of electrically coupled networks.
    Publicover NG
    IEEE Trans Biomed Eng; 1985 Jul; 32(7):491-6. PubMed ID: 4018829
    [No Abstract]   [Full Text] [Related]  

  • 4. [Serotonergic system of neurons in the CNS of terrestrial snail: morphology, ontogenesis, control of behavior].
    Ierusalimskiĭ VN; Balaban PM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2010; 60(5):515-24. PubMed ID: 21260975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Burst generation by electrically coupled network in the snail helisoma: analysis using computer simulation.
    Merickel M; Kater SB; Eyman ED
    Brain Res; 1978 Dec; 159(2):331-49. PubMed ID: 215269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The role of rhythmic activity in the processes of information fixation and reproduction in a model network made up of nerve-like elements].
    Shul'gina GI
    Dokl Akad Nauk SSSR; 1990; 312(5):1275-9. PubMed ID: 2226148
    [No Abstract]   [Full Text] [Related]  

  • 7. Centrally programmed feeding in Helisoma: identification and chracteristics of an electrically coupled premotor neuron network.
    Kaneko CR; Merickel M; Kater SB
    Brain Res; 1978 May; 146(1):1-21. PubMed ID: 647382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Model study of neuronal mechanisms of distinguishing 2 tactile stimuli in the snail].
    Logunov DB; Konnov MI
    Neirofiziologiia; 1983; 15(6):604-10. PubMed ID: 6322021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons.
    Zipser D; Andersen RA
    Nature; 1988 Feb; 331(6158):679-84. PubMed ID: 3344044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Modeling the "conditioned" response of command neurons on the isolated CNS of grape snails].
    Tret'iakov VP; Deriĭ BN
    Dokl Akad Nauk SSSR; 1979; 246(3):750-2. PubMed ID: 467226
    [No Abstract]   [Full Text] [Related]  

  • 11. [Mechanisms of development of long-periodicity oscillations in activity in nerve nets. Stochastically uniform nerve nets].
    Degtiarenko AM
    Neirofiziologiia; 1986; 18(3):382-91. PubMed ID: 3016573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural networks: learning from a computer cat.
    Anderson A
    Nature; 1988 Feb; 331(6158):657-9. PubMed ID: 3344040
    [No Abstract]   [Full Text] [Related]  

  • 13. [Mechanisms of the formation of long-periodicity oscillations in activity in nerve nets. Nets with pre- and postsynaptic inhibition].
    Degtiarenko AM
    Neirofiziologiia; 1986; 18(3):392-402. PubMed ID: 3016574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic patterns of brain cell assemblies. 3. Continuity-discontinuity problems. Discontinuous systems.
    Blumenthal R
    Neurosci Res Program Bull; 1974 Mar; 12(1):65-77. PubMed ID: 4844490
    [No Abstract]   [Full Text] [Related]  

  • 15. [Central organization of rhythmic motor activity of the foregut in decapoda Crustacea (author's transl)].
    Moulins M; Vedel JP
    J Physiol (Paris); 1977; 73(4):471-510. PubMed ID: 926037
    [No Abstract]   [Full Text] [Related]  

  • 16. Long-term neuromodulatory regulation of a motor pattern-generating network: maintenance of synaptic efficacy and oscillatory properties.
    Thoby-Brisson M; Simmers J
    J Neurophysiol; 2002 Dec; 88(6):2942-53. PubMed ID: 12466420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Model of rhythm assimilation].
    Shcherbunov AI
    Biofizika; 1970; 15(4):701-8. PubMed ID: 5471680
    [No Abstract]   [Full Text] [Related]  

  • 18. A neural network simulation of simultaneous single-unit activity recorded from the dragonfly ganglia.
    Faller WE; Luttges MW
    Biomed Sci Instrum; 1990; 26():201-8. PubMed ID: 2334768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maturation of rhythmic neural network: role of central modulatory inputs.
    Fénelon V; Le Feuvre Y; Bem T; Meyrand P
    J Physiol Paris; 2003 Jan; 97(1):59-68. PubMed ID: 14706691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical coupling induces bistability of rhythms in networks of inhibitory spiking neurons.
    Bem T; Le Feuvre Y; Rinzel J; Meyrand P
    Eur J Neurosci; 2005 Nov; 22(10):2661-8. PubMed ID: 16307609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.