BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8736026)

  • 1. Calorimetric characterization of the formation of acrylic type bone cements.
    Yang JM; You JW; Chen HL; Shih CH
    J Biomed Mater Res; 1996; 33(2):83-8. PubMed ID: 8736026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Action of eugenol as a retarder against polymerization of methyl methacrylate by benzoyl peroxide.
    Fujisawa S; Kadoma Y
    Biomaterials; 1997 May; 18(9):701-3. PubMed ID: 9152003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Initiator Concentration on the Polymerization Course of Methacrylate Bone Cement.
    Przesławski G; Szcześniak K; Gajewski P; Marcinkowska A
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433131
    [No Abstract]   [Full Text] [Related]  

  • 4. Study of polymerization of acrylic bone cement: effect of HEMA and EGDMA.
    Yang JM
    J Biomed Mater Res; 1998; 43(1):54-61. PubMed ID: 9509344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymerization of acrylic bone cement using differential scanning calorimetry.
    Yang JM
    Biomaterials; 1997 Oct; 18(19):1293-8. PubMed ID: 9307218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ESR study of MMA polymerization by a peroxide/amine system: bone cement formation.
    Oldfield FF; Yasuda HK
    J Biomed Mater Res; 1999 Mar; 44(4):436-45. PubMed ID: 10397948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of acrylic bone cement containing PMMA-SiO2 hybrid sol-gel material.
    Yang JM; Lu CS; Hsu YG; Shih CH
    J Biomed Mater Res; 1997; 38(2):143-54. PubMed ID: 9178742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel high-viscosity, two-solution acrylic bone cement: effect of chemical composition on properties.
    Hasenwinkel JM; Lautenschlager EP; Wixson RL; Gilbert JL
    J Biomed Mater Res; 1999 Oct; 47(1):36-45. PubMed ID: 10400878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of cross-linking agents on acrylic bone cements containing radiopacifiers.
    De S; Vazquez B
    Biomaterials; 2001 Aug; 22(15):2177-81. PubMed ID: 11432598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of tertiary amines with reduced toxicity to the curing process of acrylic bone cements.
    Vazquez B; Elvira C; Levenfeld B; Pascual B; Goñi I; Gurruchaga M; Ginebra MP; Gil FX; Planell JA; Liso PA; Rebuelta M; San Román J
    J Biomed Mater Res; 1997 Jan; 34(1):129-36. PubMed ID: 8978662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of crosslinking agents on acrylic bone cements based on poly(methylmethacrylate).
    Deb S; Vazquez B; Bonfield W
    J Biomed Mater Res; 1997 Dec; 37(4):465-73. PubMed ID: 9407294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the shelf life of a two-solution bone cement.
    Shim JB; Warner SJ; Hasenwinkel JM; Gilbert JL
    Biomaterials; 2005 Jul; 26(19):4181-7. PubMed ID: 15664645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of TBB, as an Initiator, on the Biological Compatibility of PMMA/MMA Bone Cement.
    Hamajima K; Ozawa R; Saruta J; Saita M; Kitajima H; Taleghani SR; Usami D; Goharian D; Uno M; Miyazawa K; Goto S; Tsukinoki K; Ogawa T
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32512780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of powder components of commercial bone cements.
    Imai Y; Ohyama A
    Dent Mater J; 2001 Dec; 20(4):345-52. PubMed ID: 11915628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of acrylic bone cement using dynamic mechanical analysis.
    Yang JM; Li HM; Yang MC; Shih CH
    J Biomed Mater Res; 1999; 48(1):52-60. PubMed ID: 10029150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymerization kinetics, glass transition temperature and creep of acrylic bone cements.
    Migliaresi C; Fambri L; Kolarik J
    Biomaterials; 1994 Sep; 15(11):875-81. PubMed ID: 7833433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contact killing antimicrobial acrylic bone cements: preparation and characterization.
    Punyani S; Deb S; Singh H
    J Biomater Sci Polym Ed; 2007; 18(2):131-45. PubMed ID: 17323849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crosslinking property of an oligomeric unsaturated phosphoester used as a potential injectable biomaterial.
    Qiu JJ; He ZX; Liu CM; Guo XD; Zheng QX
    Biomed Mater; 2008 Dec; 3(4):044107. PubMed ID: 19029608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of initiation chemistry on the fracture toughness, fatigue strength, and residual monomer content of a novel high-viscosity, two-solution acrylic bone cement.
    Hasenwinkel JM; Lautenschlager EP; Wixson RL; Gilbert JL
    J Biomed Mater Res; 2002 Mar; 59(3):411-21. PubMed ID: 11774298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A self-healing biomaterial based on free-radical polymerization.
    Dailey MM; Silvia AW; McIntire PJ; Wilson GO; Moore JS; White SR
    J Biomed Mater Res A; 2014 Sep; 102(9):3024-32. PubMed ID: 24124084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.