BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 8736762)

  • 1. Basic helix-loop-helix transcription factors and the cross-regulation of sulphate and phosphate metabolism in yeast.
    Crowther DJ; Kent NA; Spit AF; Mellor J
    Biochem Soc Trans; 1996 May; 24(2):354-9. PubMed ID: 8736762
    [No Abstract]   [Full Text] [Related]  

  • 2. Possible cross-regulation of phosphate and sulfate metabolism in Saccharomyces cerevisiae.
    O'Connell KF; Baker RE
    Genetics; 1992 Sep; 132(1):63-73. PubMed ID: 1398064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of PHO4 nuclear localization by the PHO80-PHO85 cyclin-CDK complex.
    O'Neill EM; Kaffman A; Jolly ER; O'Shea EK
    Science; 1996 Jan; 271(5246):209-12. PubMed ID: 8539622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription regulation of the Saccharomyces cerevisiae PHO5 gene by the Ino2p and Ino4p basic helix-loop-helix proteins.
    He Y; Swaminathan A; Lopes JM
    Mol Microbiol; 2012 Jan; 83(2):395-407. PubMed ID: 22182244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A putative membrane protein, Pho88p, involved in inorganic phosphate transport in Saccharomyces cerevisiae.
    Yompakdee C; Ogawa N; Harashima S; Oshima Y
    Mol Gen Genet; 1996 Jul; 251(5):580-90. PubMed ID: 8709965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy.
    Cai M; Davis RW
    Cell; 1990 May; 61(3):437-46. PubMed ID: 2185892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleosome transactions on the promoters of the yeast GAL and PHO genes.
    Lohr D
    J Biol Chem; 1997 Oct; 272(43):26795-8. PubMed ID: 9341105
    [No Abstract]   [Full Text] [Related]  

  • 8. Multifunctional DNA-binding proteins mediate concerted transcription activation of yeast ribosomal protein genes.
    Mager WH; Planta RJ
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):351-5. PubMed ID: 2207166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA binding site of the yeast heteromeric Ino2p/Ino4p basic helix-loop-helix transcription factor: structural requirements as defined by saturation mutagenesis.
    Schüller HJ; Richter K; Hoffmann B; Ebbert R; Schweizer E
    FEBS Lett; 1995 Aug; 370(1-2):149-52. PubMed ID: 7649294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of the INO2 regulatory gene of Saccharomyces cerevisiae is controlled by positive and negative promoter elements and an upstream open reading frame.
    Eiznhamer DA; Ashburner BP; Jackson JC; Gardenour KR; Lopes JM
    Mol Microbiol; 2001 Mar; 39(5):1395-405. PubMed ID: 11251853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The C-terminal region of the Hot1 transcription factor binds GGGACAAA-related sequences in the promoter of its target genes.
    Gomar-Alba M; Amaral C; Artacho A; D'Auria G; Pimentel C; Rodrigues-Pousada C; lí del Olmo M
    Biochim Biophys Acta; 2015 Dec; 1849(12):1385-97. PubMed ID: 26470684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single point mutations in Met4p impair the transcriptional repression of MET genes in Saccharomyces cerevisiae.
    Omura F; Fujita A; Shibano Y
    FEBS Lett; 1996 Jun; 387(2-3):179-83. PubMed ID: 8674545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing the rate of chromatin remodeling and gene activation--a novel role for the histone acetyltransferase Gcn5.
    Barbaric S; Walker J; Schmid A; Svejstrup JQ; Hörz W
    EMBO J; 2001 Sep; 20(17):4944-51. PubMed ID: 11532958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional regulatory networks in Saccharomyces cerevisiae.
    Lee TI; Rinaldi NJ; Robert F; Odom DT; Bar-Joseph Z; Gerber GK; Hannett NM; Harbison CT; Thompson CM; Simon I; Zeitlinger J; Jennings EG; Murray HL; Gordon DB; Ren B; Wyrick JJ; Tagne JB; Volkert TL; Fraenkel E; Gifford DK; Young RA
    Science; 2002 Oct; 298(5594):799-804. PubMed ID: 12399584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae.
    Cherest H; Davidian JC; Thomas D; Benes V; Ansorge W; Surdin-Kerjan Y
    Genetics; 1997 Mar; 145(3):627-35. PubMed ID: 9055073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The centromere-binding factor Cbf1p from Candida albicans complements the methionine auxotrophic phenotype of Saccharomyces cerevisiae.
    Eck R; Stoyan T; Künkel W
    Yeast; 2001 Aug; 18(11):1047-52. PubMed ID: 11481675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of promoter regions containing binding sites of the heterodimeric transcription factor Ino2/Ino4 involved in yeast phospholipid biosynthesis.
    Hoppen J; Repenning A; Albrecht A; Geburtig S; Schüller HJ
    Yeast; 2005 Jun; 22(8):601-13. PubMed ID: 16034810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The homeodomain protein Pho2 and the basic-helix-loop-helix protein Pho4 bind DNA cooperatively at the yeast PHO5 promoter.
    Barbarić S; Münsterkötter M; Svaren J; Hörz W
    Nucleic Acids Res; 1996 Nov; 24(22):4479-86. PubMed ID: 8948638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative transcriptional regulation of PH081 expression in Saccharomyces cerevisiae.
    Creasy CL; Shao D; Begman LW
    Gene; 1996 Feb; 168(1):23-9. PubMed ID: 8626060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribosomal protein genes in the yeast Candida albicans may be activated by a heterodimeric transcription factor related to Ino2 and Ino4 from S. cerevisiae.
    Hoppen J; Dietz M; Warsow G; Rohde R; Schüller HJ
    Mol Genet Genomics; 2007 Sep; 278(3):317-30. PubMed ID: 17588177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.