These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 873684)

  • 1. Intracellular enzymes and their localization in slender and stumpy forms of Trypanosoma brucei rhodesiense.
    Venkatesan S; Bird RG; Ormerod WE
    Int J Parasitol; 1977 Apr; 7(2):139-47. PubMed ID: 873684
    [No Abstract]   [Full Text] [Related]  

  • 2. A proposed density-dependent model of long slender to short stumpy transformation in the African trypanosomes.
    Seed JR; Black SJ
    J Parasitol; 1997 Aug; 83(4):656-62. PubMed ID: 9267408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein uptake and digestion in bloodstream and culture forms of Trypanosoma brucei.
    Langreth SG; Balber AE
    J Protozool; 1975 Feb; 22(1):40-53. PubMed ID: 1117436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the effects of immune killing mechanisms on Trypanosoma brucei parasites of slender and stumpy morphology.
    McLintock LM; Turner CM; Vickerman K
    Parasite Immunol; 1993 Aug; 15(8):475-80. PubMed ID: 8233562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of the oligomycin-sensitive ATPase in bloodstream forms of Trypanosoma brucei brucei.
    Bienen EJ; Shaw MK
    Mol Biochem Parasitol; 1991 Sep; 48(1):59-66. PubMed ID: 1838138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Filaments of Trypanosoma brucei: some notes on differences in origin and structure in two strains of Trypanosoma (Trypanozoon) brucei rhodesiense.
    Ellis DS; Ormerod WE; Lumsden WH
    Acta Trop; 1976; 33(2):151-68. PubMed ID: 8975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of a tartrate-sensitive acid phosphatase of Trypanosoma brucei.
    Schell D; Stierhof YD; Overath P
    FEBS Lett; 1990 Oct; 271(1-2):67-70. PubMed ID: 2226816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of Trypanosoma brucei bloodstream trypomastigotes from long slender to short stumpy-like forms in axenic culture.
    Hamm B; Schindler A; Mecke D; Duszenko M
    Mol Biochem Parasitol; 1990 Apr; 40(1):13-22. PubMed ID: 2348830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slender and stumpy bloodstream forms of Trypanosoma brucei display a differential response to extracellular acidic and proteolytic stress.
    Nolan DP; Rolin S; Rodriguez JR; Van Den Abbeele J; Pays E
    Eur J Biochem; 2000 Jan; 267(1):18-27. PubMed ID: 10601846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolysis products of cAMP analogs cause transformation of Trypanosoma brucei from slender to stumpy-like forms.
    Laxman S; Riechers A; Sadilek M; Schwede F; Beavo JA
    Proc Natl Acad Sci U S A; 2006 Dec; 103(50):19194-9. PubMed ID: 17142316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ubiquitin-ligase system in Trypanosoma brucei brucei.
    Lowrie DJ; Giffin BF; Ventullo RM
    Am J Trop Med Hyg; 1993 Nov; 49(5):545-51. PubMed ID: 8250094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of multiplication rates in primary and challenge infections of Trypanosoma brucei bloodstream forms.
    McLintock LM; Turner CM; Vickerman K
    Parasitology; 1990 Aug; 101 Pt 1():49-55. PubMed ID: 2235074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ubiquitination of plasma membrane ectophosphatase in bloodstream forms of Trypanosoma brucei.
    Steverding D
    Parasitol Res; 2006 Jan; 98(2):157-61. PubMed ID: 16308729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell density triggers slender to stumpy differentiation of Trypanosoma brucei bloodstream forms in culture.
    Reuner B; Vassella E; Yutzy B; Boshart M
    Mol Biochem Parasitol; 1997 Dec; 90(1):269-80. PubMed ID: 9497048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid content of the slender and stumpy forms of Trypanosoma brucei rhodesiense: a comparative study.
    Venkatesan S; Ormerod WE
    Comp Biochem Physiol B; 1976; 53(4):481-7. PubMed ID: 1261236
    [No Abstract]   [Full Text] [Related]  

  • 16. The association of distinct acid phosphatases with the flagella pocket and surface membrane fractions obtained from bloodstream forms of Trypanosoma rhodesiense.
    McLaughlin J
    Mol Cell Biochem; 1986 May; 70(2):177-84. PubMed ID: 3014309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of excretion of acid phosphatase in Trypanosoma brucei and T. cruzi.
    Jadin JM; Creemers J
    Trans R Soc Trop Med Hyg; 1972; 66(1):8-9. PubMed ID: 4558681
    [No Abstract]   [Full Text] [Related]  

  • 18. Replication, differentiation, growth and the virulence of Trypanosoma brucei infections.
    Turner CM; Aslam N; Dye C
    Parasitology; 1995 Sep; 111 ( Pt 3)():289-300. PubMed ID: 7567097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential mitochondrial gene expression between slender and stumpy bloodforms of Trypanosoma brucei.
    Feagin JE; Jasmer DP; Stuart K
    Mol Biochem Parasitol; 1986 Sep; 20(3):207-14. PubMed ID: 2429179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation differences among proteins of bloodstream developmental stages of Trypanosoma brucei brucei.
    Aboagye-Kwarteng T; ole-MoiYoi OK; Lonsdale-Eccles JD
    Biochem J; 1991 Apr; 275 ( Pt 1)(Pt 1):7-14. PubMed ID: 2018486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.