These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 8737052)

  • 21. Improvement of intestinal absorption of peptides: adsorption of B1-Phe monoglucosylated insulin to rat intestinal brush-border membrane vesicles.
    Hashimoto T; Nomoto M; Komatsu K; Haga M; Hayashi M
    Eur J Pharm Biopharm; 2000 Sep; 50(2):197-204. PubMed ID: 10962227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple carriers for dipeptide transport: carrier-mediated transport of glycyl-L-proline in renal BBMV.
    Skopicki HA; Fisher K; Zikos D; Bloch R; Flouret G; Peterson DR
    Am J Physiol; 1991 Oct; 261(4 Pt 2):F670-8. PubMed ID: 1928378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional and molecular expression of intestinal oligopeptide transporter (Pept-1) after a brief fast.
    Thamotharan M; Bawani SZ; Zhou X; Adibi SA
    Metabolism; 1999 Jun; 48(6):681-4. PubMed ID: 10381139
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Utilization of peptide carrier system to improve intestinal absorption: targeting prolidase as a prodrug-converting enzyme.
    Bai JP; Hu M; Subramanian P; Mosberg HI; Amidon GL
    J Pharm Sci; 1992 Feb; 81(2):113-6. PubMed ID: 1545347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. H+ gradient-dependent transport of aminocephalosporins in rat intestinal brush-border membrane vesicles. Role of dipeptide transport system.
    Okano T; Inui K; Takano M; Hori R
    Biochem Pharmacol; 1986 Jun; 35(11):1781-6. PubMed ID: 3718527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro studies on intestinal peptide transport in horses.
    Cehak A; Schröder B; Feige K; Breves G
    J Anim Sci; 2013 Nov; 91(11):5220-8. PubMed ID: 24045491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Suitability of enalapril as a probe of the dipeptide transporter system: in vitro and in vivo studies.
    Morrison RA; Chong S; Marino AM; Wasserman MA; Timmins P; Moore VA; Irwin WJ
    Pharm Res; 1996 Jul; 13(7):1078-82. PubMed ID: 8842049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of the small intestinal uptake of phenylalanylglycine via a H+/oligopeptide transport system by chemical modification with fatty acids.
    Fujita T; Morishita Y; Ito H; Kuribayashi D; Yamamoto A; Muranishi S
    Life Sci; 1997; 61(25):2455-65. PubMed ID: 9416764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dipeptide transport and hydrolysis in rat small intestine, in vitro.
    Sykes AP; Lister N; Bailey PD; Boyd CA; Bronk JR
    Biochim Biophys Acta; 1995 Jul; 1237(1):70-6. PubMed ID: 7619845
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characteristics of tripeptide transport in human jejunal brush-border membrane vesicles.
    Wilson D; Barry JA; Ramaswamy K
    Biochim Biophys Acta; 1989 Nov; 986(1):123-9. PubMed ID: 2819090
    [TBL] [Abstract][Full Text] [Related]  

  • 31. H(+)-coupled uphill transport of the dipeptide glycylsarcosine by bovine intestinal brush-border membrane vesicles.
    Wolffram S; Grenacher B; Scharrer E
    J Dairy Sci; 1998 Oct; 81(10):2595-603. PubMed ID: 9812265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphate transport by jejunal brush border membrane vesicles of the streptozocin-diabetic rat.
    Ghishan FK; Borowitz S; Mulberg A
    Diabetes; 1985 Aug; 34(8):723-7. PubMed ID: 4018414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport characteristics of cephalosporin antibiotics across intestinal brush-border membrane in man, rat and rabbit.
    Sugawara M; Toda T; Iseki K; Miyazaki K; Shiroto H; Kondo Y; Uchino J
    J Pharm Pharmacol; 1992 Dec; 44(12):968-72. PubMed ID: 1361560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterisation of penicillin-G uptake in rabbit small-intestinal brush-border membrane vesicles.
    Poschet JF; Hammond SM; Fairclough PD
    Biochim Biophys Acta; 1996 Jan; 1278(2):233-40. PubMed ID: 8593281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiplicity of the H+-dependent transport mechanism of dipeptide and anionic beta-lactam antibiotic ceftibuten in rat intestinal brush-border membrane.
    Iseki K; Sugawara M; Sato K; Naasani I; Hayakawa T; Kobayashi M; Miyazaki K
    J Pharmacol Exp Ther; 1999 Apr; 289(1):66-71. PubMed ID: 10086988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. H+ coupled transport of p.o. cephalosporins via dipeptide carriers in rabbit intestinal brush-border membranes: difference of transport characteristics between cefixime and cephradine.
    Inui K; Okano T; Maegawa H; Kato M; Takano M; Hori R
    J Pharmacol Exp Ther; 1988 Oct; 247(1):235-41. PubMed ID: 3171973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interactions of cephradine and cefaclor with the intestinal absorption of D-galactose.
    Idoate I; Mendizábal MV; Urdaneta E; Larralde J
    J Pharm Pharmacol; 1996 Jun; 48(6):645-50. PubMed ID: 8832502
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transport of methionine hydroxy analog across the brush border membrane of rat jejunum.
    Brachet P; Puigserver A
    J Nutr; 1987 Jul; 117(7):1241-6. PubMed ID: 3612303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ontogenesis of intestinal taurine transport: evidence for a beta-carrier in developing rat jejunum.
    Moyer MS; Goodrich AL; Rolfes MM; Suchy FJ
    Am J Physiol; 1988 Jun; 254(6 Pt 1):G870-7. PubMed ID: 3377085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Propylene glycol-linked amino acid/dipeptide diester prodrugs of oleanolic acid for PepT1-mediated transport: synthesis, intestinal permeability, and pharmacokinetics.
    Cao F; Gao Y; Wang M; Fang L; Ping Q
    Mol Pharm; 2013 Apr; 10(4):1378-87. PubMed ID: 23339520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.