BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 8737083)

  • 1. Role of the actin cytoskeleton in the regulation of the cystic fibrosis transmembrane conductance regulator.
    Cantiello HF
    Exp Physiol; 1996 May; 81(3):505-14. PubMed ID: 8737083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cAMP-independent regulation of CFTR by the actin cytoskeleton.
    Prat AG; Xiao YF; Ausiello DA; Cantiello HF
    Am J Physiol; 1995 Jun; 268(6 Pt 1):C1552-61. PubMed ID: 7541942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actin filament organization is required for proper cAMP-dependent activation of CFTR.
    Prat AG; Cunningham CC; Jackson GR; Borkan SC; Wang Y; Ausiello DA; Cantiello HF
    Am J Physiol; 1999 Dec; 277(6):C1160-9. PubMed ID: 10600767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The actin filament disrupter cytochalasin D activates the recombinant cystic fibrosis transmembrane conductance regulator Cl- channel in mouse 3T3 fibroblasts.
    Fischer H; Illek B; Machen TE
    J Physiol; 1995 Dec; 489 ( Pt 3)(Pt 3):745-54. PubMed ID: 8788939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. cAMP-activated anion conductance is associated with expression of CFTR in neonatal mouse cardiac myocytes.
    Lader AS; Wang Y; Jackson GR; Borkan SC; Cantiello HF
    Am J Physiol Cell Physiol; 2000 Feb; 278(2):C436-50. PubMed ID: 10666040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cAMP activates an ATP-permeable pathway in neonatal rat cardiac myocytes.
    Lader AS; Xiao YF; O'Riordan CR; Prat AG; Jackson GR; Cantiello HF
    Am J Physiol Cell Physiol; 2000 Jul; 279(1):C173-87. PubMed ID: 10898729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of actin filament organization in CFTR activation.
    Cantiello HF
    Pflugers Arch; 2001; 443 Suppl 1():S75-80. PubMed ID: 11845308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. External ATP and its analogs activate the cystic fibrosis transmembrane conductance regulator by a cyclic AMP-independent mechanism.
    Cantiello HF; Prat AG; Reisin IL; Ercole LB; Abraham EH; Amara JF; Gregory RJ; Ausiello DA
    J Biol Chem; 1994 Apr; 269(15):11224-32. PubMed ID: 7512560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CFTR in Calu-3 human airway cells: channel properties and role in cAMP-activated Cl- conductance.
    Haws C; Finkbeiner WE; Widdicombe JH; Wine JJ
    Am J Physiol; 1994 May; 266(5 Pt 1):L502-12. PubMed ID: 7515579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole cell Cl- conductances in mouse choroid plexus epithelial cells do not require CFTR expression.
    Kibble JD; Garner C; Colledge WH; Brown S; Kajita H; Evans M; Brown PD
    Am J Physiol; 1997 Jun; 272(6 Pt 1):C1899-907. PubMed ID: 9227419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of cAMP-dependent C1- currents in guinea-pig paneth cells without relevant evidence for CFTR expression.
    Tsumura T; Hazama A; Miyoshi T; Ueda S; Okada Y
    J Physiol; 1998 Nov; 512 ( Pt 3)(Pt 3):765-77. PubMed ID: 9769420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.
    Lu M; Dong K; Egan ME; Giebisch GH; Boulpaep EL; Hebert SC
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6082-7. PubMed ID: 20231442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cystic fibrosis transmembrane conductance regulator is a dual ATP and chloride channel.
    Reisin IL; Prat AG; Abraham EH; Amara JF; Gregory RJ; Ausiello DA; Cantiello HF
    J Biol Chem; 1994 Aug; 269(32):20584-91. PubMed ID: 7519611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of phenylalanine 508 causes attenuated phosphorylation-dependent activation of CFTR chloride channels.
    Wang F; Zeltwanger S; Hu S; Hwang TC
    J Physiol; 2000 May; 524 Pt 3(Pt 3):637-48. PubMed ID: 10790148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clusters of Cl- channels in CFTR-expressing Sf9 cells switch spontaneously between slow and fast gating modes.
    Larsen EH; Price EM; Gabriel SE; Stutts MJ; Boucher RC
    Pflugers Arch; 1996 Jul; 432(3):528-37. PubMed ID: 8766014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correction of CFTR malfunction and stimulation of Ca-activated Cl channels restore HCO3- secretion in cystic fibrosis bile ductular cells.
    Zsembery A; Jessner W; Sitter G; SpirlĂ­ C; Strazzabosco M; Graf J
    Hepatology; 2002 Jan; 35(1):95-104. PubMed ID: 11786964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Both CFTR and outwardly rectifying chloride channels contribute to cAMP-stimulated whole cell chloride currents.
    Schwiebert EM; Flotte T; Cutting GR; Guggino WB
    Am J Physiol; 1994 May; 266(5 Pt 1):C1464-77. PubMed ID: 7515570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CFTR channels expressed in CHO cells do not have detectable ATP conductance.
    Grygorczyk R; Tabcharani JA; Hanrahan JW
    J Membr Biol; 1996 May; 151(2):139-48. PubMed ID: 8661502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capsaicin potentiates wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride-channel currents.
    Ai T; Bompadre SG; Wang X; Hu S; Li M; Hwang TC
    Mol Pharmacol; 2004 Jun; 65(6):1415-26. PubMed ID: 15155835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two mechanisms of genistein inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in murine cell line.
    Lansdell KA; Cai Z; Kidd JF; Sheppard DN
    J Physiol; 2000 Apr; 524 Pt 2(Pt 2):317-30. PubMed ID: 10766914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.