These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 8737257)
1. Modulation of cholinergic synaptic functions by sialylcholesterol. Tanaka Y; Ando S Glycoconj J; 1996 Apr; 13(2):321-6. PubMed ID: 8737257 [TBL] [Abstract][Full Text] [Related]
2. Gangliosides and sialylcholesterol as modulators of synaptic functions. Ando S; Tanaka Y; Waki H; Kon K; Iwamoto M; Fukui F Ann N Y Acad Sci; 1998 Jun; 845():232-9. PubMed ID: 9668357 [TBL] [Abstract][Full Text] [Related]
3. Gangliosides enhance KCl-induced Ca2+ influx and acetylcholine release in brain synaptosomes. Tanaka Y; Waki H; Kon K; Ando S Neuroreport; 1997 Jul; 8(9-10):2203-7. PubMed ID: 9243612 [TBL] [Abstract][Full Text] [Related]
4. Impaired synaptic functions with aging as characterized by decreased calcium influx and acetylcholine release. Tanaka Y; Hasegawa A; Ando S J Neurosci Res; 1996 Jan; 43(1):63-76. PubMed ID: 8838575 [TBL] [Abstract][Full Text] [Related]
5. alpha-Sialylcholesterol enhances the depolarization-induced release of acetylcholine and glutamate in rat hippocampus: in vivo microdialysis study. Tanaka Y; Han H; Hagishita T; Fukui F; Liu G; Ando S Neurosci Lett; 2004 Feb; 357(1):9-12. PubMed ID: 15036601 [TBL] [Abstract][Full Text] [Related]
6. The calcium-dependent [3H]acetylcholine release from synaptosomes of brown trout (Salmo trutta) optic tectum is inhibited by adenosine A1 receptors: effects of enucleation on A1 receptor density and cholinergic markers. Poli A; Di Iorio P; Beraudi A; Notari S; Zaccanti F; Villani L; Traversa U Brain Res; 2001 Feb; 892(1):78-85. PubMed ID: 11172751 [TBL] [Abstract][Full Text] [Related]
7. Storage and release of acetylcholine in rat cortical synaptosomes: effects of D,L-2-(4-phenylpiperidino)cyclohexanol (AH5183). Suszkiw JB; Toth G Brain Res; 1986 Oct; 386(1-2):371-8. PubMed ID: 3022885 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of mitochondrial Ca2+ release diminishes the effectiveness of methyl mercury to release acetylcholine from synaptosomes. Levesque PC; Hare MF; Atchison WD Toxicol Appl Pharmacol; 1992 Jul; 115(1):11-20. PubMed ID: 1378659 [TBL] [Abstract][Full Text] [Related]
9. Compared effects of two vesicular acetylcholine uptake blockers, AH5183 and cetiedil, on cholinergic functions in Torpedo synaptosomes: acetylcholine synthesis, choline transport, vesicular uptake, and evoked acetylcholine release. Gaudry-Talarmain YM; Diebler MF; O'Regan S J Neurochem; 1989 Mar; 52(3):822-9. PubMed ID: 2493069 [TBL] [Abstract][Full Text] [Related]
10. Inhibition by quinacrine of depolarization-induced acetylcholine release and calcium influx in rat brain cortical synaptosomes. Baba A; Ohta A; Iwata H J Neurochem; 1983 Jun; 40(6):1758-61. PubMed ID: 6854332 [TBL] [Abstract][Full Text] [Related]
11. Effects of different secretagogues and intracellular messengers on the muscarinic modulation of [3H]acetylcholine release. Onge ES; Otero DA; Bottiglieri DF; Meyer EM Neurochem Res; 1986 Nov; 11(11):1547-56. PubMed ID: 3120025 [TBL] [Abstract][Full Text] [Related]
12. Calcium-dependent [3H]acetylcholine release and muscarinic autoreceptors in rat cortical synaptosomes during development. Marchi M; Caviglia A; Paudice P; Raiteri M Neurochem Res; 1983 May; 8(5):621-8. PubMed ID: 6888653 [TBL] [Abstract][Full Text] [Related]
13. Effect of alpha-latrotoxin on acetylcholine release and intracellular Ca2+ concentration in synaptosomes: Na(+)-dependent and Na(+)-independent components. Deri Z; Bors P; Adam-Vizi V J Neurochem; 1993 Mar; 60(3):1065-72. PubMed ID: 8436959 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of choline efflux results in enhanced acetylcholine synthesis and release in the guinea-pig corticocerebral synaptosomes. Pittel Z; Heldman E; Rubinstein R; Cohen S Neurochem Int; 1992 Feb; 20(2):219-27. PubMed ID: 1284802 [TBL] [Abstract][Full Text] [Related]
15. Pirenzepine-insensitive muscarinic autoreceptors regulate acetylcholine release in human neocortex. Marchi M; Ruelle A; Andrioli GC; Raiteri M Brain Res; 1990 Jun; 520(1-2):347-50. PubMed ID: 2207644 [TBL] [Abstract][Full Text] [Related]
16. Altered acetylcholine release in the hippocampus of dystrophin-deficient mice. Parames SF; Coletta-Yudice ED; Nogueira FM; Nering de Sousa MB; Hayashi MA; Lima-Landman MT; Lapa AJ; Souccar C Neuroscience; 2014 Jun; 269():173-83. PubMed ID: 24704431 [TBL] [Abstract][Full Text] [Related]
17. High affinity choline uptake and calcium-dependent acetylcholine release in proteoliposomes derived from rat cortical synaptosomes. Meyer EM; Cooper JR J Neurosci; 1983 May; 3(5):987-94. PubMed ID: 6842288 [TBL] [Abstract][Full Text] [Related]
18. Ca2(+)-surrogate action of Pb2+ on acetylcholine release from rat brain synaptosomes. Shao Z; Suszkiw JB J Neurochem; 1991 Feb; 56(2):568-74. PubMed ID: 1846400 [TBL] [Abstract][Full Text] [Related]
19. Effects of peroxidation and aging on rat neocortical ACh-release and protein kinase C. Meyer EM; Judkins JH; Momol AE; Hardwick EO Neurobiol Aging; 1994; 15(1):63-7. PubMed ID: 8159264 [TBL] [Abstract][Full Text] [Related]