BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 8738345)

  • 1. Thermostable variants of subtilisin selected by temperature-gradient gel electrophoresis.
    Sättler A; Kanka S; Maurer KH; Riesner D
    Electrophoresis; 1996 Apr; 17(4):784-92. PubMed ID: 8738345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced stability of subtilisin by three point mutations.
    Narhi LO; Stabinsky Y; Levitt M; Miller L; Sachdev R; Finley S; Park S; Kolvenbach C; Arakawa T; Zukowski M
    Biotechnol Appl Biochem; 1991 Feb; 13(1):12-24. PubMed ID: 2054102
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random mutagenesis of the weak calcium binding site in subtilisin Carlsberg and screening for thermostability by temperature-gradient gel electrophoresis.
    Sättler A; Kanka S; Schrörs W; Riesner D
    Adv Exp Med Biol; 1996; 379():171-82. PubMed ID: 8796322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-gradient gel electrophoresis for analysis and screening of thermostable proteases.
    Sättler A; Riesner D
    Electrophoresis; 1993 Aug; 14(8):782-8. PubMed ID: 8404822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed evolution study of temperature adaptation in a psychrophilic enzyme.
    Miyazaki K; Wintrode PL; Grayling RA; Rubingh DN; Arnold FH
    J Mol Biol; 2000 Apr; 297(4):1015-26. PubMed ID: 10736234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteases of enhanced stability: characterization of a thermostable variant of subtilisin.
    Bryan PN; Rollence ML; Pantoliano MW; Wood J; Finzel BC; Gilliland GL; Howard AJ; Poulos TL
    Proteins; 1986 Dec; 1(4):326-34. PubMed ID: 3329733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-vitro selection of highly stabilized protein variants with optimized surface.
    Martin A; Sieber V; Schmid FX
    J Mol Biol; 2001 Jun; 309(3):717-26. PubMed ID: 11397091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-mediated thermostability in the subtilisin superfamily: the crystal structure of Bacillus Ak.1 protease at 1.8 A resolution.
    Smith CA; Toogood HS; Baker HM; Daniel RM; Baker EN
    J Mol Biol; 1999 Dec; 294(4):1027-40. PubMed ID: 10588904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Requirement of left-handed glycine residue for high stability of the Tk-subtilisin propeptide as revealed by mutational and crystallographic analyses.
    Pulido MA; Tanaka S; Sringiew C; You DJ; Matsumura H; Koga Y; Takano K; Kanaya S
    J Mol Biol; 2007 Dec; 374(5):1359-73. PubMed ID: 17988685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The roles of surface loop insertions and disulfide bond in the stabilization of thermophilic WF146 protease.
    Bian Y; Liang X; Fang N; Tang XF; Tang B; Shen P; Peng Z
    FEBS Lett; 2006 Oct; 580(25):6007-14. PubMed ID: 17052711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single calcium binding site is crucial for the calcium-dependent thermal stability of thermolysin-like proteases.
    Veltman OR; Vriend G; Berendsen HJ; Van den Burg B; Venema G; Eijsink VG
    Biochemistry; 1998 Apr; 37(15):5312-9. PubMed ID: 9548763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro evolution of a hyperstable Gbeta1 variant.
    Wunderlich M; Schmid FX
    J Mol Biol; 2006 Oct; 363(2):545-57. PubMed ID: 16978647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of thermal treatment on the coagulation of soy proteins induced by subtilisin Carlsberg.
    Inouye K; Nakano M; Asaoka K; Yasukawa K
    J Agric Food Chem; 2009 Jan; 57(2):717-23. PubMed ID: 19117398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the weak Ca(2+)-binding site of subtilisin J by site-directed mutagenesis on heat stability.
    Jang JS; Bae KH; Byun SM
    Biochem Biophys Res Commun; 1992 Oct; 188(1):184-9. PubMed ID: 1358066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of variability of P1 gene region of N strain of potato virus Y using temperature-gradient gel electrophoresis and DNA heteroduplex analysis.
    Matousek J; Ptácek J; Dĕdic P; Schubert J
    Acta Virol; 2000 Feb; 44(1):41-6. PubMed ID: 10989691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilized variant of Streptomyces subtilisin inhibitor and its use in stabilizing subtilisin BPN'.
    Ganz PJ; Bauer MD; Sun Y; Fieno AM; Grant RA; Correa PE; Laskowski M; Saunders CW
    Protein Eng Des Sel; 2004 Apr; 17(4):333-9. PubMed ID: 15187224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extreme temperature tolerance of a hyperthermophilic protein coupled to residual structure in the unfolded state.
    Wallgren M; Adén J; Pylypenko O; Mikaelsson T; Johansson LB; Rak A; Wolf-Watz M
    J Mol Biol; 2008 Jun; 379(4):845-58. PubMed ID: 18471828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein engineering on subtilisin E.
    Zhu L; Ji Y
    Chin J Biotechnol; 1997; 13(1):9-15. PubMed ID: 9376509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unscrambling thermal stability and temperature adaptation in evolved variants of a cold-active lipase.
    Gatti-Lafranconi P; Caldarazzo SM; Villa A; Alberghina L; Lotti M
    FEBS Lett; 2008 Jun; 582(15):2313-8. PubMed ID: 18534193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of stabilized proteins by combinatorial consensus mutagenesis.
    Amin N; Liu AD; Ramer S; Aehle W; Meijer D; Metin M; Wong S; Gualfetti P; Schellenberger V
    Protein Eng Des Sel; 2004 Nov; 17(11):787-93. PubMed ID: 15574484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.