These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 8738381)

  • 1. Visually guided stepping under conditions of step cycle-related denial of visual information.
    Hollands MA; Marple-Horvat DE
    Exp Brain Res; 1996 May; 109(2):343-56. PubMed ID: 8738381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordination of eye and leg movements during visually guided stepping.
    Hollands MA; Marple-Horvat DE
    J Mot Behav; 2001 Jun; 33(2):205-16. PubMed ID: 11404215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When cats need to see to step accurately?
    Volgushev M; Nguyen CT; Iyer GS; Beloozerova IN
    J Physiol; 2022 Jan; 600(1):75-94. PubMed ID: 34761816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related differences in stepping performance during step cycle-related removal of vision.
    Chapman GJ; Hollands MA
    Exp Brain Res; 2006 Oct; 174(4):613-21. PubMed ID: 16733708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for interactive locomotor and oculomotor deficits in cerebellar patients during visually guided stepping.
    Crowdy KA; Hollands MA; Ferguson IT; Marple-Horvat DE
    Exp Brain Res; 2000 Dec; 135(4):437-54. PubMed ID: 11156308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alcohol affects eye movements essential for visually guided stepping.
    Crowdy KA; Marple-Horvat DE
    Alcohol Clin Exp Res; 2004 Mar; 28(3):402-7. PubMed ID: 15084897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Eye Movements During Visually Guided Stepping.
    Hollands MA; Marple-Horvat DE; Henkes S; Rowan AK
    J Mot Behav; 1995 Jun; 27(2):155-163. PubMed ID: 12736124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal activity in the lateral cerebellum of the cat related to visual stimuli at rest, visually guided step modification, and saccadic eye movements.
    Marple-Horvat DE; Criado JM; Armstrong DM
    J Physiol; 1998 Jan; 506 ( Pt 2)(Pt 2):489-514. PubMed ID: 9490874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct visualisation of gaze and hypometric saccades in cerebellar patients during visually guided stepping.
    Marple-Horvat DE; Crowdy KA
    Gait Posture; 2005 Jan; 21(1):39-47. PubMed ID: 15536032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a link between changes to gaze behaviour and risk of falling in older adults during adaptive locomotion.
    Chapman GJ; Hollands MA
    Gait Posture; 2006 Nov; 24(3):288-94. PubMed ID: 16289922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rehearsal by eye movement improves visuomotor performance in cerebellar patients.
    Crowdy KA; Kaur-Mann D; Cooper HL; Mansfield AG; Offord JL; Marple-Horvat DE
    Exp Brain Res; 2002 Sep; 146(2):244-7. PubMed ID: 12195526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. External postural perturbations induce multiple anticipatory postural adjustments when subjects cannot pre-select their stepping foot.
    Jacobs JV; Horak FB
    Exp Brain Res; 2007 May; 179(1):29-42. PubMed ID: 17091288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The biomechanics of walking shape the use of visual information during locomotion over complex terrain.
    Matthis JS; Barton SL; Fajen BR
    J Vis; 2015 Mar; 15(3):. PubMed ID: 25788704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual guidance of the human foot during a step.
    Reynolds RF; Day BL
    J Physiol; 2005 Dec; 569(Pt 2):677-84. PubMed ID: 16179363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control strategies for rapid, visually guided adjustments of the foot during continuous walking.
    Barton SL; Matthis JS; Fajen BR
    Exp Brain Res; 2019 Jul; 237(7):1673-1690. PubMed ID: 30976822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual signals contribute to the coding of gaze direction.
    Blouin J; Amade N; Vercher JL; Teasdale N; Gauthier GM
    Exp Brain Res; 2002 Jun; 144(3):281-92. PubMed ID: 12021810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of human ankle muscle vibration on posture and balance during adaptive locomotion.
    Sorensen KL; Hollands MA; Patla E
    Exp Brain Res; 2002 Mar; 143(1):24-34. PubMed ID: 11907687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination between the fore- and hindlimbs is bidirectional, asymmetrically organized, and flexible during quadrupedal locomotion in the intact adult cat.
    Thibaudier Y; Hurteau MF; Telonio A; Frigon A
    Neuroscience; 2013 Jun; 240():13-26. PubMed ID: 23485807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the cerebellum and motor cortex in the regulation of visually controlled locomotion.
    Armstrong DM; Marple-Horvat DE
    Can J Physiol Pharmacol; 1996 Apr; 74(4):443-55. PubMed ID: 8828890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccade to stepping delays in elders at high risk for falling.
    Greany JF; Di Fabio RP
    Aging Clin Exp Res; 2008 Oct; 20(5):428-33. PubMed ID: 19039284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.