These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 8738648)

  • 1. Monte-Carlo calculations of the solvent effects on the conformation of angiotensin II.
    Collet O; Premilat S
    Int J Pept Protein Res; 1996 Apr; 47(4):239-44. PubMed ID: 8738648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvation energies of amino acid side chains and backbone in a family of host-guest pentapeptides.
    Wimley WC; Creamer TP; White SH
    Biochemistry; 1996 Apr; 35(16):5109-24. PubMed ID: 8611495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic hydration potentials using a Monte Carlo Reference State (MCRS) for protein solvation modeling.
    Rakhmanov SV; Makeev VJ
    BMC Struct Biol; 2007 Mar; 7():19. PubMed ID: 17397537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ES/IS: estimation of conformational free energy by combining dynamics simulations with explicit solvent with an implicit solvent continuum model.
    Vorobjev YN; Hermans J
    Biophys Chem; 1999 Apr; 78(1-2):195-205. PubMed ID: 10343388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation of tetragastrin in DMSO. Monte Carlo simulation taking account of solvent effects.
    Kuroda M; Yamazaki K; Taga T
    Int J Pept Protein Res; 1994 Nov; 44(5):499-506. PubMed ID: 7896510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic solvation parameters for proteins in a membrane environment. Application to transmembrane alpha-helices.
    Nolde DE; Arseniev AS; Vergoten G; Efremov RG
    J Biomol Struct Dyn; 1997 Aug; 15(1):1-18. PubMed ID: 9283974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational analysis of endothelin-1: effects of solvation free energy.
    Hempel JC; Fine RM; Hassan M; Ghoul W; Guaragna A; Koerber SC; Li Z; Hagler AT
    Biopolymers; 1995 Sep; 36(3):283-301. PubMed ID: 7669916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of polyelectrolyte polypeptide structures using Monte Carlo conformational search methods with implicit solvation modeling.
    Evans JS; Chan SI; Goddard WA
    Protein Sci; 1995 Oct; 4(10):2019-31. PubMed ID: 8535238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational study of angiotensin II.
    Shin YA; Yoo SE
    Biopolymers; 1996 Feb; 38(2):183-90. PubMed ID: 8589252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulations of the solution structure of simple alcohols in water-acetonitrile mixtures.
    Nagy PI; Erhardt PW
    J Phys Chem B; 2005 Mar; 109(12):5855-72. PubMed ID: 16851638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulations of a protein molecule with and without hydration energy calculated by the hydration-shell model.
    Wako H
    J Protein Chem; 1989 Dec; 8(6):733-47. PubMed ID: 2624684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The treatment of solvation by a generalized Born model and a self-consistent charge-density functional theory-based tight-binding method.
    Xie L; Liu H
    J Comput Chem; 2002 Nov; 23(15):1404-15. PubMed ID: 12370943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The conformations of cyclic (1-->2)-beta-D-glucans: application of multidimensional clustering analysis to conformational data sets obtained by Metropolis Monte Carlo calculations.
    York WS; Thomsen JU; Meyer B
    Carbohydr Res; 1993 Oct; 248():55-80. PubMed ID: 8252547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A solvent model for simulations of peptides in bilayers. II. Membrane-spanning alpha-helices.
    Efremov RG; Nolde DE; Vergoten G; Arseniev AS
    Biophys J; 1999 May; 76(5):2460-71. PubMed ID: 10233063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Hydration of the left spiral of the poly-L-proline type. Study by the Monte Carlo method].
    Aĭzenkhaber F; Adzhubeĭ AA; Aĭzenmenger F; Esipova NG
    Biofizika; 1992; 37(1):62-7. PubMed ID: 1520718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the multiple-minima problem in the conformational analysis of polypeptides. V. Application of the self-consistent electrostatic field and the electrostatically driven Monte Carlo methods to bovine pancreatic trypsin inhibitor.
    Ripoll DR; Piela L; Vásquez M; Scheraga HA
    Proteins; 1991; 10(3):188-98. PubMed ID: 1715563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo minimization with thermalization for global optimization of polypeptide conformations in cartesian coordinate space.
    Caflisch A; Niederer P; Anliker M
    Proteins; 1992 Sep; 14(1):102-9. PubMed ID: 1409559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FACTS: Fast analytical continuum treatment of solvation.
    Haberthür U; Caflisch A
    J Comput Chem; 2008 Apr; 29(5):701-15. PubMed ID: 17918282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent accessibilities in glycyl, alanyl and seryl dipeptides.
    Manavalan P; Ponnuswamy PK; Srinivasan AR
    Biochem J; 1977 Oct; 167(1):171-82. PubMed ID: 588249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.