BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 8738651)

  • 1. Structural redesign and stabilization of the overlapping tandem beta-turns of RNA polymerase II.
    Dobbins JR; Murali N; Long EC
    Int J Pept Protein Res; 1996 Apr; 47(4):260-8. PubMed ID: 8738651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and conformational investigation of tandem repeat sequence in RNA polymerase II.
    Nishi N; Ohiso I; Sakairi N; Tokura S; Tsunemi M; Oka M
    Biochem Biophys Res Commun; 1995 Jan; 206(3):981-7. PubMed ID: 7832814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the YSPTSPS repeat containing two SPXX motifs in the CTD of RNA polymerase II: NMR studies of cyclic model peptides reveal that the SPTS turn is more stable than SPSY in water.
    Kumaki Y; Matsushima N; Yoshida H; Nitta K; Hikichi K
    Biochim Biophys Acta; 2001 Jul; 1548(1):81-93. PubMed ID: 11451441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformation of the RNA polymerase II C-terminal domain: circular dichroism of long and short fragments.
    Bienkiewicz EA; Moon Woody A; Woody RW
    J Mol Biol; 2000 Mar; 297(1):119-33. PubMed ID: 10704311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyproline, beta-turn helices. Novel secondary structures proposed for the tandem repeats within rhodopsin, synaptophysin, synexin, gliadin, RNA polymerase II, hordein, and gluten.
    Matsushima N; Creutz CE; Kretsinger RH
    Proteins; 1990; 7(2):125-55. PubMed ID: 2139224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aromatic stacking and bending of the DNA helix by the individual repeat units of the carboxy-terminal domain of RNA polymerase II.
    Huang X; Shullenberger DF; Long EC
    Biochem Biophys Res Commun; 1994 Jan; 198(2):712-9. PubMed ID: 8297383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The heptad repeat in the largest subunit of RNA polymerase II binds by intercalating into DNA.
    Suzuki M
    Nature; 1990 Apr; 344(6266):562-5. PubMed ID: 2181321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of RNA polymerase II carboxy-terminal domain by 3'-RNA-processing factors.
    Meinhart A; Cramer P
    Nature; 2004 Jul; 430(6996):223-6. PubMed ID: 15241417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of the C-terminal domain of novel human SR-A1 protein: interaction with the CTD domain of RNA polymerase II.
    Katsarou ME; Papakyriakou A; Katsaros N; Scorilas A
    Biochem Biophys Res Commun; 2005 Aug; 334(1):61-8. PubMed ID: 15992770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural studies of a synthetic peptide derived from the carboxyl-terminal domain of RNA polymerase II.
    Cagas PM; Corden JL
    Proteins; 1995 Feb; 21(2):149-60. PubMed ID: 7777490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR studies on YSPTSPSY: implications for the design of DNA bisintercalators.
    Harding MM
    J Med Chem; 1992 Dec; 35(25):4658-64. PubMed ID: 1469695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evaluation of type I and type II beta-turn mixtures. Circular dichroism, NMR and molecular dynamics studies.
    Perczel A; Hollósi M; Sándor P; Fasman GD
    Int J Pept Protein Res; 1993 Mar; 41(3):223-36. PubMed ID: 8463046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of beta-turn structure on the passive diffusion of peptides across Caco-2 cell monolayers.
    Knipp GT; Vander Velde DG; Siahaan TJ; Borchardt RT
    Pharm Res; 1997 Oct; 14(10):1332-40. PubMed ID: 9358544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A stereoelectronic effect on turn formation due to proline substitution in elastin-mimetic polypeptides.
    Kim W; McMillan RA; Snyder JP; Conticello VP
    J Am Chem Soc; 2005 Dec; 127(51):18121-32. PubMed ID: 16366565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding of immunogenic peptide fragments of proteins in water solution. I. Sequence requirements for the formation of a reverse turn.
    Dyson HJ; Rance M; Houghten RA; Lerner RA; Wright PE
    J Mol Biol; 1988 May; 201(1):161-200. PubMed ID: 2843644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. β-Amino acids containing peptides and click-cyclized peptide as β-turn mimics: a comparative study with 'conventional' lactam- and disulfide-bridged hexapeptides.
    Larregola M; Lequin O; Karoyan P; Guianvarc'h D; Lavielle S
    J Pept Sci; 2011 Sep; 17(9):632-43. PubMed ID: 21644250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prosomatostatin processing in Neuro2A cells. Role of beta-turn structure in the vicinity of the Arg-Lys cleavage site.
    Brakch N; Boileau G; Simonetti M; Nault C; Joseph-Bravo P; Rholam M; Cohen P
    Eur J Biochem; 1993 Aug; 216(1):39-47. PubMed ID: 8103453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A type-II beta-turn, proline-containing, cyclic pentapeptide as a building block for the construction of models of the cleavage site of pro-oxytocin.
    Dettin M; Falcigno L; Campanile T; Scarinci C; D'Auria G; Cusin M; Paolillo L; Di Bello C
    J Pept Sci; 2001 Jul; 7(7):358-73. PubMed ID: 11495497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes.
    Bause E
    Biochem J; 1983 Feb; 209(2):331-6. PubMed ID: 6847620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational investigation of alpha, beta-dehydropeptides. V*. Stability of reverse turns in saturated and alpha, beta-unsaturated peptides Ac-Pro-Xaa-NHCH3: CD studies in various solvents.
    Lisowski M; Pietrzyński G; Rzeszotarska B
    Int J Pept Protein Res; 1993 Nov; 42(5):466-74. PubMed ID: 8106199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.