These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 8738782)

  • 1. Large curvature effect on pulsatile entrance flow in a curved tube: model experiment simulating blood flow in an aortic arch.
    Naruse T; Tanishita K
    J Biomech Eng; 1996 May; 118(2):180-6. PubMed ID: 8738782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsteady and three-dimensional simulation of blood flow in the human aortic arch.
    Shahcheraghi N; Dwyer HA; Cheer AY; Barakat AI; Rutaganira T
    J Biomech Eng; 2002 Aug; 124(4):378-87. PubMed ID: 12188204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulation of pulsating flow in the aortic arch.
    Engelbrecht H; Steinmann CM; Pretorius L
    S Afr Med J; 1998 Feb; 88 Suppl 1():C40-3. PubMed ID: 9542494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some flow visualization and laser-Doppler-velocity measurements in a true-to-scale elastic model of a human aortic arch--a new model technique.
    Liepsch D; Moravec S; Baumgart R
    Biorheology; 1992; 29(5-6):563-80. PubMed ID: 1306383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of wall shear stress distal to a tri-leaflet valve in a rigid model of the aortic arch with branch flows.
    Nandy S; Tarbell JM
    J Biomech Eng; 1988 Aug; 110(3):172-9. PubMed ID: 3172735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping.
    Kilner PJ; Yang GZ; Mohiaddin RH; Firmin DN; Longmore DB
    Circulation; 1993 Nov; 88(5 Pt 1):2235-47. PubMed ID: 8222118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental flow studies in an elastic Y-model.
    Mijovic B; Liepsch D
    Technol Health Care; 2003; 11(2):115-41. PubMed ID: 12697953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of tilting disk, heart valve orientation on flow through a curved aortic model.
    Walker JD; Tiederman WG; Phillips WM
    J Biomech Eng; 1989 Aug; 111(3):229-32. PubMed ID: 2779188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Velocity and wall shear stress patterns in the human right coronary artery.
    Kirpalani A; Park H; Butany J; Johnston KW; Ojha M
    J Biomech Eng; 1999 Aug; 121(4):370-5. PubMed ID: 10464690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A numerical calculation of flow in a curved tube model of the left main coronary artery.
    Perktold K; Nerem RM; Peter RO
    J Biomech; 1991; 24(3-4):175-89. PubMed ID: 2055907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The shear rate at the wall in a symmetrically branched tube simulating the aortic bifurcation.
    Walburn FJ; Stein PD
    Biorheology; 1982; 19(1/2):307-16. PubMed ID: 6212090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A numerical study of flow in curved tubes simulating coronary arteries.
    Chang LJ; Tarbell JM
    J Biomech; 1988; 21(11):927-37. PubMed ID: 3253279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow of an elastico-viscous liquid in a curved pipe of slowly varying curvature.
    Sarin VB
    Int J Biomed Comput; 1993 Mar; 32(2):135-49. PubMed ID: 8449591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency dependence of dynamic curvature effects on flow through coronary arteries.
    Moore JE; Weydahl ES; Santamarina A
    J Biomech Eng; 2001 Apr; 123(2):129-33. PubMed ID: 11340873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experiment on the pulsatile flow at transitional Reynolds numbers--the fluid dynamical meaning of the blood flow parameters in the aorta.
    Nakamura M; Sugiyama W; Haruna M
    J Biomech Eng; 1993 Nov; 115(4A):412-7. PubMed ID: 8309236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow patterns in dog aortic arch under a steady flow condition simulating mid-systole.
    Endo S; Sohara Y; Karino T
    Heart Vessels; 1996; 11(4):180-91. PubMed ID: 9119807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis.
    Long Q; Xu XY; Ramnarine KV; Hoskins P
    J Biomech; 2001 Oct; 34(10):1229-42. PubMed ID: 11522303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the axial flow field in stenosed carotid artery bifurcation models--LDA experiments.
    Gijsen FJ; Palmen DE; van der Beek MH; van de Vosse FN; van Dongen ME; Janssen JD
    J Biomech; 1996 Nov; 29(11):1483-9. PubMed ID: 8894929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unsteady entrance flow development in a straight tube.
    He X; Ku DN
    J Biomech Eng; 1994 Aug; 116(3):355-60. PubMed ID: 7799639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions.
    Moore JE; Ku DN
    J Biomech Eng; 1994 Aug; 116(3):337-46. PubMed ID: 7799637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.