These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 8738789)
1. A sagittal plane model of the knee and cruciate ligaments with application of a sensitivity analysis. Beynnon B; Yu J; Huston D; Fleming B; Johnson R; Haugh L; Pope MH J Biomech Eng; 1996 May; 118(2):227-39. PubMed ID: 8738789 [TBL] [Abstract][Full Text] [Related]
2. An inverse dynamics modeling approach to determine the restraining function of human knee ligament bundles. Mommersteeg TJ; Huiskes R; Blankevoort L; Kooloos JG; Kauer JM J Biomech; 1997 Feb; 30(2):139-46. PubMed ID: 9001934 [TBL] [Abstract][Full Text] [Related]
3. On the coupling between anterior and posterior cruciate ligaments, and knee joint response under anterior femoral drawer in flexion: a finite element study. Moglo KE; Shirazi-Adl A Clin Biomech (Bristol); 2003 Oct; 18(8):751-9. PubMed ID: 12957562 [TBL] [Abstract][Full Text] [Related]
4. A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions. Shelburne KB; Pandy MG J Biomech; 1997 Feb; 30(2):163-76. PubMed ID: 9001937 [TBL] [Abstract][Full Text] [Related]
5. Cruciate coupling and screw-home mechanism in passive knee joint during extension--flexion. Moglo KE; Shirazi-Adl A J Biomech; 2005 May; 38(5):1075-83. PubMed ID: 15797589 [TBL] [Abstract][Full Text] [Related]
6. Dependence of cruciate-ligament loading on muscle forces and external load. Pandy MG; Shelburne KB J Biomech; 1997 Oct; 30(10):1015-24. PubMed ID: 9391868 [TBL] [Abstract][Full Text] [Related]
7. In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. Sakane M; Fox RJ; Woo SL; Livesay GA; Li G; Fu FH J Orthop Res; 1997 Mar; 15(2):285-93. PubMed ID: 9167633 [TBL] [Abstract][Full Text] [Related]
8. New parameters describing how knee ligaments carry force in situ predict interspecimen variations in laxity during simulated clinical exams. Imhauser CW; Kent RN; Boorman-Padgett J; Thein R; Wickiewicz TL; Pearle AD J Biomech; 2017 Nov; 64():212-218. PubMed ID: 29078961 [TBL] [Abstract][Full Text] [Related]
9. Effects of knee flexion angle and loading conditions on the end-to-end distance of the posterior cruciate ligament: a comparison of the roles of the anterolateral and posteromedial bundles. Wang JH; Kato Y; Ingham SJ; Maeyama A; Linde-Rosen M; Smolinski P; Fu FH; Harner C Am J Sports Med; 2014 Dec; 42(12):2972-8. PubMed ID: 25315993 [TBL] [Abstract][Full Text] [Related]
10. The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing. Withrow TJ; Huston LJ; Wojtys EM; Ashton-Miller JA Clin Biomech (Bristol); 2006 Nov; 21(9):977-83. PubMed ID: 16790304 [TBL] [Abstract][Full Text] [Related]
11. A dynamic multibody model of the physiological knee to predict internal loads during movement in gravitational field. Bersini S; Sansone V; Frigo CA Comput Methods Biomech Biomed Engin; 2016; 19(5):571-9. PubMed ID: 26057607 [TBL] [Abstract][Full Text] [Related]
12. In situ forces of the anterior and posterior cruciate ligaments in high knee flexion: an in vitro investigation. Li G; Zayontz S; Most E; DeFrate LE; Suggs JF; Rubash HE J Orthop Res; 2004 Mar; 22(2):293-7. PubMed ID: 15013087 [TBL] [Abstract][Full Text] [Related]
13. Effects of applied quadriceps and hamstrings muscle loads on forces in the anterior and posterior cruciate ligaments. Markolf KL; O'Neill G; Jackson SR; McAllister DR Am J Sports Med; 2004; 32(5):1144-9. PubMed ID: 15262635 [TBL] [Abstract][Full Text] [Related]
14. Recruitment of knee joint ligaments. Blankevoort L; Huiskes R; de Lange A J Biomech Eng; 1991 Feb; 113(1):94-103. PubMed ID: 2020181 [TBL] [Abstract][Full Text] [Related]
15. Direct in vitro measurement of forces in the cruciate ligaments. Part I: The effect of multiplane loading in the intact knee. Wascher DC; Markolf KL; Shapiro MS; Finerman GA J Bone Joint Surg Am; 1993 Mar; 75(3):377-86. PubMed ID: 8444916 [TBL] [Abstract][Full Text] [Related]
16. A multiple-bundle model to characterize the mechanical behavior of the cruciate ligaments. Amiri S; Cooke TD; Wyss UP Knee; 2011 Jan; 18(1):34-41. PubMed ID: 20116260 [TBL] [Abstract][Full Text] [Related]
17. The anterior cruciate ligament provides resistance to externally applied anterior tibial force but not to internal rotational torque during simulated weight-bearing flexion. Wünschel M; Müller O; Lo J; Obloh C; Wülker N Arthroscopy; 2010 Nov; 26(11):1520-7. PubMed ID: 20920837 [TBL] [Abstract][Full Text] [Related]
18. Theoretical estimates of cruciate ligament forces: effects of tibial surface geometry and ligament orientations. Imran A; O'Connor JJ Proc Inst Mech Eng H; 1997; 211(6):425-39. PubMed ID: 9509881 [TBL] [Abstract][Full Text] [Related]
19. In vitro forces in the normal and cruciate-deficient knee during simulated squatting motion. Singerman R; Berilla J; Archdeacon M; Peyser A J Biomech Eng; 1999 Apr; 121(2):234-42. PubMed ID: 10211459 [TBL] [Abstract][Full Text] [Related]
20. Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression. Marouane H; Shirazi-Adl A; Adouni M; Hashemi J J Biomech; 2014 Apr; 47(6):1353-9. PubMed ID: 24576586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]