These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 8738792)

  • 1. A rehabilitation treadmill with software for providing real-time gait analysis and visual feedback.
    Dingwell JB; Davis BL
    J Biomech Eng; 1996 May; 118(2):253-5. PubMed ID: 8738792
    [No Abstract]   [Full Text] [Related]  

  • 2. [Development and evaluation of a diagnostic treadmill for three-dimensional imaging of gait dynamics].
    Rupp R; Schablowski M; Gerner HJ
    Biomed Tech (Berl); 1998; 43 Suppl():192-3. PubMed ID: 9859320
    [No Abstract]   [Full Text] [Related]  

  • 3. A novel method for automatic treadmill speed adaptation.
    von Zitzewitz J; Bernhardt M; Riener R
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):401-9. PubMed ID: 17894272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for automated control of belt velocity changes with an instrumented treadmill.
    Hinkel-Lipsker JW; Hahn ME
    J Biomech; 2016 Jan; 49(1):132-134. PubMed ID: 26654110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The development of a treadmill system].
    Geng ZY; Zhou HX; Zhang CF
    Zhongguo Yi Liao Qi Xie Za Zhi; 2002 Mar; 26(2):133-4, 137. PubMed ID: 16104181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliability of the walking speed and gait dynamics variables while walking on a feedback-controlled treadmill.
    Choi JS; Kang DW; Seo JW; Tack GR
    J Biomech; 2015 May; 48(7):1336-9. PubMed ID: 25798762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of an instrumented treadmill for real-time gait symmetry evaluation and feedback in normal and trans-tibial amputee subjects.
    Dingwell JB; Davis BL; Frazier DM
    Prosthet Orthot Int; 1996 Aug; 20(2):101-10. PubMed ID: 8876003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The consistency of maximum running speed measurements in humans using a feedback-controlled treadmill, and a comparison with maximum attainable speed during overground locomotion.
    Bowtell MV; Tan H; Wilson AM
    J Biomech; 2009 Nov; 42(15):2569-74. PubMed ID: 19683240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic synchronization of functional electrical stimulation and robotic assisted treadmill training.
    Dohring ME; Daly JJ
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):310-3. PubMed ID: 18586610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining the centre of pressure during walking and running using an instrumented treadmill.
    Verkerke GJ; Hof AL; Zijlstra W; Ament W; Rakhorst G
    J Biomech; 2005 Sep; 38(9):1881-5. PubMed ID: 16023476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From diagnostics to therapy--conceptual basis for real-time movement feedback in rehabilitation medicine.
    Schablowski-Trautmann M; Kögel M; Rupp R; Mikut R; Gerner HJ
    Biomed Tech (Berl); 2006 Dec; 51(5-6):299-304. PubMed ID: 17155864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of motion platform embedded with dual belt treadmill instrumented with two force plates.
    Sinitski EH; Lemaire ED; Baddour N
    J Rehabil Res Dev; 2015; 52(2):221-34. PubMed ID: 26230116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury.
    Aoyagi D; Ichinose WE; Harkema SJ; Reinkensmeyer DJ; Bobrow JE
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):387-400. PubMed ID: 17894271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmented multisensory feedback enhances locomotor adaptation in humans with incomplete spinal cord injury.
    Yen SC; Landry JM; Wu M
    Hum Mov Sci; 2014 Jun; 35():80-93. PubMed ID: 24746604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence-based design and development of a VR-based treadmill system for gait research and rehabilitation of patients with Parkinson's disease.
    Pérez-Sanpablo AI; González-Mendoza A; Quiñones-Uriostegui I; Rodríguez-Reyes G; Núñez-Carrera L; Hernández-Arenas C; Boll-Woehrlen MC; Alessi Montero A
    Rev Invest Clin; 2014 Jul; 66 Suppl 1():S39-47. PubMed ID: 25264796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Integrated gait analysis for future routine clinical use].
    Mainka C; Boenick U
    Biomed Tech (Berl); 1993 Dec; 38(12):325-31. PubMed ID: 8123773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating haptic-tactile feedback into a video-capture-based virtual environment for rehabilitation.
    Feintuch U; Raz L; Hwang J; Josman N; Katz N; Kizony R; Rand D; Rizzo AS; Shahar M; Yongseok J; Weiss PL
    Cyberpsychol Behav; 2006 Apr; 9(2):129-32. PubMed ID: 16640464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locomotor treadmill training with partial body-weight support before overground gait in adults with acute stroke: a pilot study.
    McCain KJ; Pollo FE; Baum BS; Coleman SC; Baker S; Smith PS
    Arch Phys Med Rehabil; 2008 Apr; 89(4):684-91. PubMed ID: 18373999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agreement between temporal and spatial gait parameters from an instrumented walkway and treadmill system at matched walking speed.
    Wearing SC; Reed LF; Urry SR
    Gait Posture; 2013 Jul; 38(3):380-4. PubMed ID: 23337733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of a disturbance-rejection controller for robotic-enhanced limb rehabilitation trainings.
    Madoński R; Kordasz M; Sauer P
    ISA Trans; 2014 Jul; 53(4):899-908. PubMed ID: 24168844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.