These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 8738795)

  • 1. Passive material properties of intact ventricular myocardium determined from a cylindrical model.
    Chaudhry HR
    J Biomech Eng; 1996 May; 118(2):262-3. PubMed ID: 8738795
    [No Abstract]   [Full Text] [Related]  

  • 2. Influence of left-ventricular shape on passive filling properties and end-diastolic fiber stress and strain.
    Choi HF; D'hooge J; Rademakers FE; Claus P
    J Biomech; 2010 Jun; 43(9):1745-53. PubMed ID: 20227697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanics of active contraction in cardiac muscle: Part II--Cylindrical models of the systolic left ventricle.
    Guccione JM; Waldman LK; McCulloch AD
    J Biomech Eng; 1993 Feb; 115(1):82-90. PubMed ID: 8445902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study.
    Doyle MG; Tavoularis S; Bourgault Y
    J Biomech Eng; 2010 Apr; 132(4):041006. PubMed ID: 20387969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Passive material properties of intact ventricular myocardium determined from a cylindrical model.
    Guccione JM; McCulloch AD; Waldman LK
    J Biomech Eng; 1991 Feb; 113(1):42-55. PubMed ID: 2020175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The orientation of an intramyocardial vessel affects its mechanical loading by the surrounding myocardium.
    Lanir Y; Nevo E
    J Biomech Eng; 1993 Aug; 115(3):327-8. PubMed ID: 8231149
    [No Abstract]   [Full Text] [Related]  

  • 7. Strain softening in rat left ventricular myocardium.
    Emery JL; Omens JH; McCulloch AD
    J Biomech Eng; 1997 Feb; 119(1):6-12. PubMed ID: 9083843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The architecture of the left ventricular myocytes relative to left ventricular systolic function.
    Dorri F; Niederer PF; Lunkenheimer PP; Anderson RH
    Eur J Cardiothorac Surg; 2010 Feb; 37(2):384-92. PubMed ID: 19717306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive and active ventricular elastances of the left ventricle.
    Zhong L; Ghista DN; Ng EY; Lim ST
    Biomed Eng Online; 2005 Feb; 4():10. PubMed ID: 15707494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model of the mechanical link between shortening of the cardiomyocytes and systolic deformation of the left ventricular myocardium.
    Smerup M; Partridge J; Agger P; Ringgaard S; Pedersen M; Petersen S; Hasenkam JM; Niederer P; Lunkenheimer PP; Anderson RH
    Technol Health Care; 2013; 21(1):63-79. PubMed ID: 23358060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model.
    Xia L; Huo M; Wei Q; Liu F; Crozier S
    Phys Med Biol; 2005 Apr; 50(8):1901-17. PubMed ID: 15815103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling of changes in mechanical constraints of left ventricular myocardium (diastolic phase) under +Gz acceleration.
    Briane M; Quandieu P; Henry J
    Physiologist; 1991 Feb; 34(1 Suppl):S166-7. PubMed ID: 2047426
    [No Abstract]   [Full Text] [Related]  

  • 13. A finite element model of the human left ventricular systole.
    Dorri F; Niederer PF; Lunkenheimer PP
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):319-41. PubMed ID: 17132618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of the structural and functional development of the normal human fetal left ventricle based on a global growth law.
    Ohayon J; Cai H; Jouk PS; Usson Y; Azancot A
    Comput Methods Biomech Biomed Engin; 2002 Apr; 5(2):113-26. PubMed ID: 12186721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mechanical properties of the passive myocardium: experiment and a mathematical model].
    Smoliuk LT; Protsenko IuL
    Biofizika; 2010; 55(5):905-9. PubMed ID: 21033360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myocardial fiber architecture and left ventricular function.
    Ingels NB
    Technol Health Care; 1997 Apr; 5(1-2):45-52. PubMed ID: 9134618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of increased afterload on left ventricular performance and mechanical efficiency are not baroreflex-mediated.
    Kolh P; Ghuysen A; Tchana-Sato V; D'Orio V; Gerard P; Morimont P; Limet R; Lambermont B
    Eur J Cardiothorac Surg; 2003 Dec; 24(6):912-9. PubMed ID: 14643808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an in vivo method for determining material properties of passive myocardium.
    Remme EW; Hunter PJ; Smiseth O; Stevens C; Rabben SI; Skulstad H; Angelsen BB
    J Biomech; 2004 May; 37(5):669-78. PubMed ID: 15046996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of left ventricular viscoelastic components based on ventricular harmonic behavior.
    Kheradvar A; Milano M; Gorman RC; Gorman JH; Gharib M
    Cardiovasc Eng; 2006 Mar; 6(1):30-9. PubMed ID: 16900419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residual stress produced by ventricular volume reduction surgery has little effect on ventricular function and mechanics: a finite element model study.
    Guccione JM; Moonly SM; Wallace AW; Ratcliffe MB
    J Thorac Cardiovasc Surg; 2001 Sep; 122(3):592-9. PubMed ID: 11547315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.