These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 873890)
41. A sigma 54 transcriptional activator also functions as a pole-specific repressor in Caulobacter. Wingrove JA; Gober JW Genes Dev; 1994 Aug; 8(15):1839-52. PubMed ID: 7958861 [TBL] [Abstract][Full Text] [Related]
42. Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Aldridge P; Paul R; Goymer P; Rainey P; Jenal U Mol Microbiol; 2003 Mar; 47(6):1695-708. PubMed ID: 12622822 [TBL] [Abstract][Full Text] [Related]
43. Cell-cycle-dependent polar morphogenesis in Caulobacter crescentus: roles of phospholipid, DNA, and protein syntheses. O'Neill EA; Bender RA J Bacteriol; 1989 Sep; 171(9):4814-20. PubMed ID: 2768189 [TBL] [Abstract][Full Text] [Related]
44. Plasmid and chromosomal DNA replication and partitioning during the Caulobacter crescentus cell cycle. Marczynski GT; Dingwall A; Shapiro L J Mol Biol; 1990 Apr; 212(4):709-22. PubMed ID: 2329579 [TBL] [Abstract][Full Text] [Related]
45. The control of asymmetric gene expression during Caulobacter cell differentiation. Marczynski GT; Shapiro L Arch Microbiol; 1995 May; 163(5):313-21. PubMed ID: 7794099 [TBL] [Abstract][Full Text] [Related]
46. Composition and molecular weight of pili purified from Pseudomonas aeruginosa K. Frost LS; Paranchych W J Bacteriol; 1977 Jul; 131(1):259-69. PubMed ID: 406258 [TBL] [Abstract][Full Text] [Related]
47. The dynamic interplay between a cell fate determinant and a lysozyme homolog drives the asymmetric division cycle of Caulobacter crescentus. Radhakrishnan SK; Thanbichler M; Viollier PH Genes Dev; 2008 Jan; 22(2):212-25. PubMed ID: 18198338 [TBL] [Abstract][Full Text] [Related]
48. Gamma-ray sensitivity during synchronous cell differentiation in Caulobacter crescentus. Iba H; Fukuda A; Okada Y J Bacteriol; 1977 Jul; 131(1):369-71. PubMed ID: 873892 [TBL] [Abstract][Full Text] [Related]
49. Cell cycle regulation and cell type-specific localization of the FtsZ division initiation protein in Caulobacter. Quardokus E; Din N; Brun YV Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6314-9. PubMed ID: 8692812 [TBL] [Abstract][Full Text] [Related]
50. A dynamically localized histidine kinase controls the asymmetric distribution of polar pili proteins. Viollier PH; Sternheim N; Shapiro L EMBO J; 2002 Sep; 21(17):4420-8. PubMed ID: 12198144 [TBL] [Abstract][Full Text] [Related]
51. Effect of 3':5'-cyclic GMP derivatives on the formation of Caulobacter surface structures. Kurn N; Shapiro L Proc Natl Acad Sci U S A; 1976 Sep; 73(9):3303-7. PubMed ID: 184471 [TBL] [Abstract][Full Text] [Related]
52. Asymmetric segregation of heat-shock proteins upon cell division in Caulobacter crescentus. Reuter SH; Shapiro L J Mol Biol; 1987 Apr; 194(4):653-62. PubMed ID: 3309328 [TBL] [Abstract][Full Text] [Related]
53. Quantitative Selection Analysis of Bacteriophage φCbK Susceptibility in Caulobacter crescentus. Christen M; Beusch C; Bösch Y; Cerletti D; Flores-Tinoco CE; Del Medico L; Tschan F; Christen B J Mol Biol; 2016 Jan; 428(2 Pt B):419-30. PubMed ID: 26593064 [TBL] [Abstract][Full Text] [Related]
54. Turning off flagellum rotation requires the pleiotropic gene pleD: pleA, pleC, and pleD define two morphogenic pathways in Caulobacter crescentus. Sommer JM; Newton A J Bacteriol; 1989 Jan; 171(1):392-401. PubMed ID: 2536661 [TBL] [Abstract][Full Text] [Related]
55. The control of spatial organization during cellular differentiation. Maddock J Cell Mol Biol Res; 1994; 40(3):199-205. PubMed ID: 7874196 [TBL] [Abstract][Full Text] [Related]
56. Caulobacter crescentus cell envelope: effect of growth conditions on murein and outer membrane protein composition. Agabian N; Unger B J Bacteriol; 1978 Feb; 133(2):987-94. PubMed ID: 627539 [TBL] [Abstract][Full Text] [Related]
57. Regulation of polar morphogenesis in Caulobacter crescentus. Fukuda A; Asada M; Koyasu S; Yoshida H; Yaginuma K; Okada Y J Bacteriol; 1981 Jan; 145(1):559-72. PubMed ID: 6109706 [TBL] [Abstract][Full Text] [Related]
58. Holdfast formation in motile swarmer cells optimizes surface attachment during Caulobacter crescentus development. Levi A; Jenal U J Bacteriol; 2006 Jul; 188(14):5315-8. PubMed ID: 16816207 [TBL] [Abstract][Full Text] [Related]
59. XRE transcription factors conserved in Caulobacter and φCbK modulate adhesin development and phage production. McLaughlin M; Fiebig A; Crosson S PLoS Genet; 2023 Nov; 19(11):e1011048. PubMed ID: 37972151 [TBL] [Abstract][Full Text] [Related]