These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 8739255)
41. Beta-blockade reduces effects of adenosine and carbachol by transregulation of inhibitory receptors and Gi proteins. Borst MM; Marquetant R; Kübler W; Strasser RH Am J Physiol; 1997 Apr; 272(4 Pt 2):H1672-9. PubMed ID: 9139950 [TBL] [Abstract][Full Text] [Related]
42. Regulation of cardiac sodium-calcium exchanger by beta-adrenergic agonists. Fan J; Shuba YM; Morad M Proc Natl Acad Sci U S A; 1996 May; 93(11):5527-32. PubMed ID: 8643609 [TBL] [Abstract][Full Text] [Related]
43. Changes in myocardial and vascular receptors in heart failure. Bristow MR J Am Coll Cardiol; 1993 Oct; 22(4 Suppl A):61A-71A. PubMed ID: 8397233 [TBL] [Abstract][Full Text] [Related]
44. Human heart beta-adrenoceptors: beta1-adrenoceptor diversification through 'affinity states' and polymorphism. Molenaar P; Chen L; Semmler AB; Parsonage WA; Kaumann AJ Clin Exp Pharmacol Physiol; 2007 Oct; 34(10):1020-8. PubMed ID: 17714089 [TBL] [Abstract][Full Text] [Related]
45. Distinct beta-adrenergic receptor subtype signaling in the heart and their pathophysiological relevance. Zheng M; Han QD; Xiao RP Sheng Li Xue Bao; 2004 Feb; 56(1):1-15. PubMed ID: 14985822 [TBL] [Abstract][Full Text] [Related]
46. Effects of chronic application of propranolol on beta-adrenergic signal transduction in heart ventricles from myopathic BIO TO2 and control hamsters. Witte K; Schnecko A; Hauth D; Wirzius S; Lemmer B Br J Pharmacol; 1998 Nov; 125(5):1033-41. PubMed ID: 9846642 [TBL] [Abstract][Full Text] [Related]
47. [Adrenergic beta receptors and guanine nucleotide binding proteins (G-proteins) of the failing human heart]. Böhm M; Schwinger RH; Erdmann E Z Kardiol; 1992; 81 Suppl 4():23-31. PubMed ID: 1337808 [TBL] [Abstract][Full Text] [Related]
48. Oligomeric interactions between phospholamban molecules regulate Ca-ATPase activity in functionally reconstituted membranes. Yao Q; Chen LT; Li J; Brungardt K; Squier TC; Bigelow DJ Biochemistry; 2001 May; 40(21):6406-13. PubMed ID: 11371203 [TBL] [Abstract][Full Text] [Related]
49. Long-term beta adrenoceptor-mediated alteration in contractility and expression of phospholamban and sarcoplasmic reticulum Ca(++)-ATPase in mammalian ventricle. Linck B; Bokník P; Baba HA; Eschenhagen T; Haverkamp U; Jäckel E; Jones LR; Kirchhefer U; Knapp J; Läer S; Müller FU; Schmitz W; Scholz H; Syska A; Vahlensieck U; Neumann J J Pharmacol Exp Ther; 1998 Jul; 286(1):531-8. PubMed ID: 9655899 [TBL] [Abstract][Full Text] [Related]
50. Sarcoplasmic reticulum Ca2+ATPase and phospholamban mRNA and protein levels in end-stage heart failure due to ischemic or dilated cardiomyopathy. Flesch M; Schwinger RH; Schnabel P; Schiffer F; van Gelder I; Bavendiek U; Südkamp M; Kuhn-Regnier F; Böhm M J Mol Med (Berl); 1996 Jun; 74(6):321-32. PubMed ID: 8862513 [TBL] [Abstract][Full Text] [Related]
51. Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Arai M; Alpert NR; MacLennan DH; Barton P; Periasamy M Circ Res; 1993 Feb; 72(2):463-9. PubMed ID: 8418995 [TBL] [Abstract][Full Text] [Related]
52. Beta-adrenergic receptors in heart failure. Insel PA; Hammond HK J Clin Invest; 1993 Dec; 92(6):2564. PubMed ID: 8254011 [No Abstract] [Full Text] [Related]
53. Targeting phospholamban by gene transfer in human heart failure. del Monte F; Harding SE; Dec GW; Gwathmey JK; Hajjar RJ Circulation; 2002 Feb; 105(8):904-7. PubMed ID: 11864915 [TBL] [Abstract][Full Text] [Related]
54. Changes in myocardial gene expression associated with beta-blocker therapy in patients with chronic heart failure. Yasumura Y; Takemura K; Sakamoto A; Kitakaze M; Miyatake K J Card Fail; 2003 Dec; 9(6):469-74. PubMed ID: 14966788 [TBL] [Abstract][Full Text] [Related]
55. Receptor systems in the non-failing human heart. Brodde OE; Broede A; Daul A; Kunde K; Michel MC Basic Res Cardiol; 1992; 87 Suppl 1():1-14. PubMed ID: 1353955 [TBL] [Abstract][Full Text] [Related]
56. Modulation of beta-adrenergic receptor signaling in heart failure and longevity: targeting adenylyl cyclase type 5. Ho D; Yan L; Iwatsubo K; Vatner DE; Vatner SF Heart Fail Rev; 2010 Sep; 15(5):495-512. PubMed ID: 20658186 [TBL] [Abstract][Full Text] [Related]
57. Improvement of postreceptor events by metoprolol treatment in patients with chronic heart failure. Böhm M; Deutsch HJ; Hartmann D; Rosée KL; Stäblein A J Am Coll Cardiol; 1997 Oct; 30(4):992-6. PubMed ID: 9316529 [TBL] [Abstract][Full Text] [Related]
58. Importance of receptor regulation in the pathophysiology and therapy of congestive heart failure. Ruffolo RR; Kopia GA Am J Med; 1986 Feb; 80(2B):67-72. PubMed ID: 2868661 [TBL] [Abstract][Full Text] [Related]
59. Interactions between phospholamban and beta-adrenergic drive may lead to cardiomyopathy and early mortality. Dash R; Kadambi V; Schmidt AG; Tepe NM; Biniakiewicz D; Gerst MJ; Canning AM; Abraham WT; Hoit BD; Liggett SB; Lorenz JN; Dorn GW; Kranias EG Circulation; 2001 Feb; 103(6):889-96. PubMed ID: 11171800 [TBL] [Abstract][Full Text] [Related]
60. Beta-adrenoceptor mediated signal transduction in congestive heart failure in cardiomyopathic (UM-X7.1) hamsters. Kaura D; Takeda N; Sethi R; Wang X; Nagano M; Dhalla NS Mol Cell Biochem; 1996 Apr 12-26; 157(1-2):191-6. PubMed ID: 8739246 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]