BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 8739625)

  • 1. Properties of Na(+)-dependent K+ conductance in the apical membrane of frog taste cells.
    Miyamoto T; Fujiyama R; Okada Y; Sato T
    Brain Res; 1996 Apr; 715(1-2):79-85. PubMed ID: 8739625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of nitric oxide donors, S-nitroso-L-cysteine and sodium nitroprusside, on the whole-cell and single channel currents in single myocytes of the guinea-pig proximal colon.
    Lang RJ; Watson MJ
    Br J Pharmacol; 1998 Feb; 123(3):505-17. PubMed ID: 9504392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular K+ activates a K(+)- and H(+)-permeable conductance in frog taste receptor cells.
    Kolesnikov SS; Margolskee RF
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):415-32. PubMed ID: 9518702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium currents in endfeet of isolated Müller cells from the frog retina.
    Skatchkov SN; Vyklický L; Orkand RK
    Glia; 1995 Sep; 15(1):54-64. PubMed ID: 8847101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a spontaneously active, Na+-permeable channel in guinea pig gallbladder smooth muscle.
    Petkov GV; Balemba OB; Nelson MT; Mawe GM
    Am J Physiol Gastrointest Liver Physiol; 2005 Sep; 289(3):G501-7. PubMed ID: 15920017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saccharin activates cation conductance via inositol 1,4,5-trisphosphate production in a subset of isolated rod taste cells in the frog.
    Okada Y; Fujiyama R; Miyamoto T; Sato T
    Eur J Neurosci; 2001 Jan; 13(2):308-14. PubMed ID: 11168535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the conductance and resting potential by extracellular K+ in frog taste receptor cells.
    Kolesnikov SS; Bobkov YuV
    Membr Cell Biol; 2000; 13(2):321-35. PubMed ID: 10779177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage clamping of a frog (Rana catesbeiana) taste cell with a single microelectrode.
    Okada Y; Miyamoto T; Sato T
    Comp Biochem Physiol Comp Physiol; 1993 Sep; 106(1):37-41. PubMed ID: 8104758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional evidence for Na+-activated K+ channels in circular smooth muscle of the opossum lower esophageal sphincter.
    Zhang Y; Paterson WG
    Am J Physiol Gastrointest Liver Physiol; 2007 Jun; 292(6):G1600-6. PubMed ID: 17332470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dynamic population of excitable cells: the taste receptor cells.
    Ghiaroni V; Fieni F; Silvestri F; Pietra P; Bigiani A
    Arch Ital Biol; 2005 Sep; 143(3-4):199-206. PubMed ID: 16097496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of an inwardly rectifying potassium channel in the rabbit superior lacrimal gland.
    Herok GH; Millar TJ; Anderton PJ; Martin DK
    Invest Ophthalmol Vis Sci; 1998 Feb; 39(2):308-14. PubMed ID: 9477987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patch clamp recording of the responses to three bitter stimuli in mouse taste cells.
    Seto E; Hayashi Y; Mori T
    Cell Mol Biol (Noisy-le-grand); 1999 May; 45(3):317-25. PubMed ID: 10386788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mytilus inhibitory peptide (MIP) induces a Na+-activated K+-current in snail neurons.
    Kiss T; Fujisawa Y; László Z; Muneoka Y
    Acta Biol Hung; 2000; 51(2-4):133-45. PubMed ID: 11034138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Na+- and Cl- -activated K+ channel in the thick ascending limb of mouse kidney.
    Paulais M; Lachheb S; Teulon J
    J Gen Physiol; 2006 Feb; 127(2):205-15. PubMed ID: 16446508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Barium, TEA and sodium sensitive potassium channels are present in the human placental syncytiotrophoblast apical membrane.
    Díaz P; Vallejos C; Guerrero I; Riquelme G
    Placenta; 2008 Oct; 29(10):883-91. PubMed ID: 18708253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A study of the "outward potassium channel" (OPC) in the frog oocyte. I. A study of the "cell-attached" configuration].
    Masetto S; Mazzucchelli E; Taglietti V; Toselli M
    Boll Soc Ital Biol Sper; 1990 Jan; 66(1):43-50. PubMed ID: 2322442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inward-rectifier potassium channels in basolateral membranes of frog skin epithelium.
    Urbach V; van Kerkhove E; Harvey BJ
    J Gen Physiol; 1994 Apr; 103(4):583-604. PubMed ID: 8057079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apical K+ channels in Necturus taste cells. Modulation by intracellular factors and taste stimuli.
    Cummings TA; Kinnamon SC
    J Gen Physiol; 1992 Apr; 99(4):591-613. PubMed ID: 1597680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wing (Ib) cells in frog taste discs detect dietary unsaturated fatty acids.
    Okada Y; Miyazaki T; Fujiyama R; Toda K
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Nov; 166(3):434-40. PubMed ID: 23872318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole-cell and single channel K+ and Cl- currents in epithelial cells of frog skin.
    García-Díaz JF
    J Gen Physiol; 1991 Jul; 98(1):131-61. PubMed ID: 1719124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.