These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 8739899)

  • 1. Microstructure-microhardness relations in parallel-fibered and lamellar bone.
    Ziv V; Wagner HD; Weiner S
    Bone; 1996 May; 18(5):417-28. PubMed ID: 8739899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotated plywood structure of primary lamellar bone in the rat: orientations of the collagen fibril arrays.
    Weiner S; Arad T; Sabanay I; Traub W
    Bone; 1997 Jun; 20(6):509-14. PubMed ID: 9177863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements.
    Takano Y; Turner CH; Burr DB
    J Bone Miner Res; 1996 Sep; 11(9):1292-301. PubMed ID: 8864904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human root dentin: structural anisotropy and Vickers microhardness isotropy.
    Wang R; Weiner S
    Connect Tissue Res; 1998; 39(4):269-79. PubMed ID: 11063007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lamellar bone: structure-function relations.
    Weiner S; Traub W; Wagner HD
    J Struct Biol; 1999 Jun; 126(3):241-55. PubMed ID: 10475685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The anisotropy of osteonal bone and its ultrastructural implications.
    Turner CH; Chandran A; Pidaparti RM
    Bone; 1995 Jul; 17(1):85-9. PubMed ID: 7577163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization.
    Reznikov N; Shahar R; Weiner S
    Bone; 2014 Feb; 59():93-104. PubMed ID: 24211799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure and micromechanical properties of the mid-diaphyses of human fetal femurs.
    Su XW; Feng QL; Cui FZ; Zhu XD
    Connect Tissue Res; 1997; 36(3):271-86. PubMed ID: 9512895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional imaging of collagen fibril organization in rat circumferential lamellar bone using a dual beam electron microscope reveals ordered and disordered sub-lamellar structures.
    Reznikov N; Almany-Magal R; Shahar R; Weiner S
    Bone; 2013 Feb; 52(2):676-83. PubMed ID: 23153959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional structure of minipig fibrolamellar bone: adaptation to axial loading.
    Almany Magal R; Reznikov N; Shahar R; Weiner S
    J Struct Biol; 2014 May; 186(2):253-64. PubMed ID: 24632449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transitional structures in lamellar bone.
    Ziv V; Sabanay I; Arad T; Traub W; Weiner S
    Microsc Res Tech; 1996 Feb; 33(2):203-13. PubMed ID: 8845519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic mechanical properties of lamellar bone using miniature cantilever bending specimens.
    Liu D; Weiner S; Wagner HD
    J Biomech; 1999 Jul; 32(7):647-54. PubMed ID: 10400351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlations between nanostructure and micromechanical properties of healing bone.
    Hoerth RM; Kerschnitzki M; Aido M; Schmidt I; Burghammer M; Duda GN; Fratzl P; Willie BM; Wagermaier W
    J Mech Behav Biomed Mater; 2018 Jan; 77():258-266. PubMed ID: 28957701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone structure: from angstroms to microns.
    Weiner S; Traub W
    FASEB J; 1992 Feb; 6(3):879-85. PubMed ID: 1740237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focused ion beam-SEM 3D analysis of mineralized osteonal bone: lamellae and cement sheath structures.
    Raguin E; Rechav K; Shahar R; Weiner S
    Acta Biomater; 2021 Feb; 121():497-513. PubMed ID: 33217569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and formation of the twisted plywood pattern of collagen fibrils in rat lamellar bone.
    Yamamoto T; Hasegawa T; Sasaki M; Hongo H; Tabata C; Liu Z; Li M; Amizuka N
    J Electron Microsc (Tokyo); 2012 Apr; 61(2):113-21. PubMed ID: 22362877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal organization in rat bone lamellae.
    Weiner S; Arad T; Traub W
    FEBS Lett; 1991 Jul; 285(1):49-54. PubMed ID: 2065782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histomorphometric study on the osteocyte lacuno-canalicular network in animals of different species. II. Parallel-fibered and lamellar bones.
    Ferretti M; Muglia MA; Remaggi F; Canè V; Palumbo C
    Ital J Anat Embryol; 1999; 104(3):121-31. PubMed ID: 10575824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the three-dimensional orientation of mineralized collagen fibrils in human lamellar bone using synchrotron X-ray phase nano-tomography.
    Varga P; Pacureanu A; Langer M; Suhonen H; Hesse B; Grimal Q; Cloetens P; Raum K; Peyrin F
    Acta Biomater; 2013 Sep; 9(9):8118-27. PubMed ID: 23707503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitamin K2, a gamma-carboxylating factor of gla-proteins, normalizes the bone crystal nucleation impaired by Mg-insufficiency.
    Amizuka N; Li M; Kobayashi M; Hara K; Akahane S; Takeuchi K; Freitas PH; Ozawa H; Maeda T; Akiyama Y
    Histol Histopathol; 2008 Nov; 23(11):1353-66. PubMed ID: 18785118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.