These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 874000)

  • 41. Differentiation of human muscle cells in the presence of neuronal conditioned medium (NCM), nerve growth factor (NGF) and spinal cord cells (SC).
    Delaporte C; Dautréaux B
    Adv Exp Med Biol; 1987; 209():15-7. PubMed ID: 3577905
    [No Abstract]   [Full Text] [Related]  

  • 42. Choline acetyltransferase activity in large ventral spinal neurons.
    Weil DE; Busby WH; McIlwain DL
    J Neurochem; 1977 Nov; 29(5):847-52. PubMed ID: 591962
    [No Abstract]   [Full Text] [Related]  

  • 43. The dynamics of choline acetyltransferase and acetylcholinesterase changes in dog spinal cord during ischemia.
    Malatová Z; Chavko M; Marsala J
    Gen Physiol Biophys; 1984 Jun; 3(3):231-8. PubMed ID: 6479579
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evidence for the local synthesis of a transmitter enzyme (glutamic acid decarboxylase) in crayfish peripheral nerve.
    Sarne Y; Schrier BK; Gainer H
    Brain Res; 1976 Jun; 110(1):91-7. PubMed ID: 1276952
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Triodothyronine enhancement of neuronal differentiation in aggregating fetal rat brain cells cultured in a chemically defined medium.
    Honegger P; Lenoir D
    Brain Res; 1980 Oct; 199(2):425-34. PubMed ID: 7417792
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of adrenaline on acetylcholine synthesis, choline acetylase and cholinesterase activity.
    Górny D; Billewicz-Stankiewicz J; Zajaczkowska M; Kutarski A
    Acta Physiol Pol; 1975; 26(1):45-54. PubMed ID: 124124
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Arachidonic acid increases choline acetyltransferase activity in spinal cord neurons through a protein kinase C-mediated mechanism.
    Chalimoniuk M; King-Pospisil K; Pedersen WA; Malecki A; Wylegala E; Mattson MP; Hennig B; Toborek M
    J Neurochem; 2004 Aug; 90(3):629-36. PubMed ID: 15255940
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ALS serum has no effect on three enzymatic activities in cultured human spinal cord neurons.
    Touzeau G; Kato AC
    Neurology; 1986 Apr; 36(4):573-6. PubMed ID: 3960335
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New organotypic model to culture the entire fetal rat spinal cord.
    Mariotti C; Askanas V; Engel WK
    J Neurosci Methods; 1993 Jun; 48(1-2):157-67. PubMed ID: 8377519
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assays for cholinergic properties in cultured rat Schwann cells.
    Brockes JP
    Proc R Soc Lond B Biol Sci; 1984 Jul; 222(1226):121-34. PubMed ID: 6147854
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Retinoic acid responsive gene product, midkine, has neurotrophic functions for mouse spinal cord and dorsal root ganglion neurons in culture.
    Michikawa M; Kikuchi S; Muramatsu H; Muramatsu T; Kim SU
    J Neurosci Res; 1993 Aug; 35(5):530-9. PubMed ID: 8377224
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Choline acetyltransferase in developing rat brain and spinal cord.
    Singh VK; McGeer EG
    Brain Res; 1977 May; 127(1):159-63. PubMed ID: 861749
    [No Abstract]   [Full Text] [Related]  

  • 53. Neurite outgrowth from embryonic chicken spinal neurons is promoted by media conditioned by muscle cells.
    Henderson CE; Huchet M; Changeux JP
    Proc Natl Acad Sci U S A; 1981 Apr; 78(4):2625-9. PubMed ID: 6941315
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Histochemistry of choline acetyltransferase in the spinal cord and spinal ganglia of the cat.
    Motavkin PA; Okhotin VE
    Neurosci Behav Physiol; 1980; 10(4):307-10. PubMed ID: 7443031
    [No Abstract]   [Full Text] [Related]  

  • 55. Cholinergic metabolism and synapse formation by a rat nerve cell line.
    Schubert D; Heinemann S; Kidokoro Y
    Proc Natl Acad Sci U S A; 1977 Jun; 74(6):2579-83. PubMed ID: 196294
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Regulation of neurotransmitter synthesis: from neuron to gene.
    Bernard C; Chireux M; Barraille P; Levan Thaï A; Vidal S; Kitahama K; Weber M
    J Physiol (Paris); 1991; 85(2):97-104. PubMed ID: 1684618
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neurotransmitter changes during development of cortical neuronal cultures.
    Boespflug O; Swaiman KF
    Dev Neurosci; 1986; 8(2):102-10. PubMed ID: 2874978
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Conditioned medium from cultures of embryonic neurons contains a high molecular weight factor which induces acetylcholine receptor aggregation on cultured myotubes.
    Schaffner AE; Daniels MP
    J Neurosci; 1982 May; 2(5):623-32. PubMed ID: 7077369
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of a hemisection on the distribution of acetylcholinesterase and choline acetyltransferase in the spinal cord of the cat.
    Gwyn DG; Wolstencroft JH; Silver A
    Brain Res; 1972 Dec; 47(2):289-301. PubMed ID: 4509138
    [No Abstract]   [Full Text] [Related]  

  • 60. Ethanol administration during early embryogenesis affects neuronal phenotypes at a time when neuroblasts are pluripotential.
    Kentroti S; Vernadakis A
    J Neurosci Res; 1992 Dec; 33(4):617-25. PubMed ID: 1484395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.