BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 8740356)

  • 1. Massive arterial air embolism during cardiopulmonary bypass: antegrade blood cardioplegia delivered by the pump--an accident waiting to happen.
    Jones NC; Howell CW
    Perfusion; 1996 Mar; 11(2):157-61. PubMed ID: 8740356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retrograde cardioplegia preserves myocardial function after induced coronary air embolism.
    Sandhu AA; Spotnitz HM; Dickstein ML; Rose EA; Michler RE
    J Thorac Cardiovasc Surg; 1997 May; 113(5):917-22. PubMed ID: 9159626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Massive air embolism during cardiopulmonary bypass. Causes, prevention, and management.
    Mills NL; Ochsner JL
    J Thorac Cardiovasc Surg; 1980 Nov; 80(5):708-17. PubMed ID: 7431967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Dioxide Flush of an Integrated Minimized Perfusion Circuit Prior to Priming Prevents Spontaneous Air Release Into the Arterial Line During Clinical Use.
    Stehouwer MC; de Vroege R; Hoohenkerk GJF; Hofman FN; Kelder JC; Buchner B; de Mol BA; Bruins P
    Artif Organs; 2017 Nov; 41(11):997-1003. PubMed ID: 28741663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Runaway pump head: new cause of gas embolism during cardiopulmonary bypass.
    Kurusz M; Shaffer CW; Christman EW; Tyers GF
    J Thorac Cardiovasc Surg; 1979 May; 77(5):792-5. PubMed ID: 431117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Massive arterial air embolism during cardiopulmonary bypass.
    Ghosh PK; Kaplan O; Barak J; Lubliner J; Vidne BA
    J Cardiovasc Surg (Torino); 1985; 26(3):248-50. PubMed ID: 3997964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Air-handling capabilities of blood cardioplegia delivery systems in a simulated pediatric model.
    Palanzo D; Guan Y; Wan C; Baer L; Kunselman A; Qiu F; Undar A
    Artif Organs; 2010 Nov; 34(11):950-4. PubMed ID: 21091518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro air removal characteristics of two neonatal cardiopulmonary bypass systems: filtration may lead to fractionation of bubbles.
    Stehouwer MC; Kelder JC; van Oeveren W; de Vroege R
    Int J Artif Organs; 2014 Sep; 37(9):688-96. PubMed ID: 25262633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prebypass filtration of cardiopulmonary bypass circuits: an outdated technique?
    Merkle F; Böttcher W; Hetzer R
    Perfusion; 2003 Mar; 18 Suppl 1():81-8. PubMed ID: 12708770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperbaric oxygenation for arterial air embolism during cardiopulmonary bypass.
    Kol S; Ammar R; Weisz G; Melamed Y
    Ann Thorac Surg; 1993 Feb; 55(2):401-3. PubMed ID: 8431050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of venous cannulation technique and cardioplegia type on plasma potassium concentration and arterial blood pressure during cardiopulmonary bypass.
    Coleman ET; Hargrove M; Mahony CO; O'Donnell A; Shorten G; Aherne T
    J Extra Corpor Technol; 2001 Sep; 33(3):148-52. PubMed ID: 11680727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A case of massive air embolism during cardiopulmonary bypass].
    Morimura K; Suehiro S; Shibata T; Minamimura H; Hattori K; Kinoshita H
    Nihon Kyobu Geka Gakkai Zasshi; 1995 Jul; 43(7):1059-62. PubMed ID: 7561320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of oxygenator characteristics on its capability to remove gaseous microemboli.
    De Somer F
    J Extra Corpor Technol; 2007 Dec; 39(4):271-3. PubMed ID: 18293817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rat model of cardiopulmonary bypass with cardioplegic arrest and hemodynamic assessment by conductance catheter technique.
    Günzinger R; Wildhirt SM; Schad H; Heimisch W; Gurdan M; Mendler N; Grammer J; Lange R; Bauernschmitt R
    Basic Res Cardiol; 2007 Nov; 102(6):508-17. PubMed ID: 17668258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospective, randomized trial comparing blood and oxygenated crystalloid cardioplegia in reoperative coronary artery bypass grafting.
    Shanewise JS; Kosinski AS; Coto JA; Jones EL
    J Thorac Cardiovasc Surg; 1998 May; 115(5):1166-71. PubMed ID: 9605087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined antegrade/retrograde cardioplegia for myocardial protection: a clinical trial.
    Bhayana JN; Kalmbach T; Booth FV; Mentzer RM; Schimert G
    J Thorac Cardiovasc Surg; 1989 Nov; 98(5 Pt 2):956-60. PubMed ID: 2682023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Animal models of cardiopulmonary bypass: development, applications, and impact.
    Jungwirth B; de Lange F
    Semin Cardiothorac Vasc Anesth; 2010 Jun; 14(2):136-40. PubMed ID: 20478954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vitro comparison of the ability of three commonly used pediatric cardiopulmonary bypass circuits to filter gaseous microemboli.
    Melchior RW; Rosenthal T; Glatz AC
    Perfusion; 2010 Jul; 25(4):255-63; discussion 265-6. PubMed ID: 20566585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cold blood cardioplegia enriched with potassium-magnesium aspartate during coronary artery bypass grafting.
    Ji B; Liu J; Liu M; Feng Z; Wang G; Lu F; Long C
    J Cardiovasc Surg (Torino); 2006 Dec; 47(6):671-5. PubMed ID: 17043614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Experience in the use and comparative assessment of the effectiveness of crystalloid and blood cardioplegia].
    Kuznetsov SV; Gritsenko VV; Doĭnikov DN; Mochalov OIu; Sharafutdinov VE
    Vestn Khir Im I I Grek; 2001; 160(5):52-4. PubMed ID: 11837000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.