These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8740441)

  • 1. Modulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II.
    Soderling TR
    Neurochem Int; 1996 Apr; 28(4):359-61. PubMed ID: 8740441
    [No Abstract]   [Full Text] [Related]  

  • 2. Learning-specific, time-dependent increases in hippocampal Ca2+/calmodulin-dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity.
    Cammarota M; Bernabeu R; Levi De Stein M; Izquierdo I; Medina JH
    Eur J Neurosci; 1998 Aug; 10(8):2669-76. PubMed ID: 9767396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation.
    Barria A; Muller D; Derkach V; Griffith LC; Soderling TR
    Science; 1997 Jun; 276(5321):2042-5. PubMed ID: 9197267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties.
    Bevilaqua LR; Medina JH; Izquierdo I; Cammarota M
    Neuroscience; 2005; 136(2):397-403. PubMed ID: 16182449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of AMPA-mediated synaptic transmission by the protein phosphatase inhibitor calyculin A in rat hippocampal slices.
    Figurov A; Boddeke H; Muller D
    Eur J Neurosci; 1993 Aug; 5(8):1035-41. PubMed ID: 7506616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitatory interactions between glutamate receptors and protein kinases.
    Soderling TR; Tan SE; McGlade-McCulloh E; Yamamoto H; Fukunaga K
    J Neurobiol; 1994 Mar; 25(3):304-11. PubMed ID: 7910847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning mechanisms: the case for CaM-KII.
    Lisman J; Malenka RC; Nicoll RA; Malinow R
    Science; 1997 Jun; 276(5321):2001-2. PubMed ID: 9221509
    [No Abstract]   [Full Text] [Related]  

  • 8. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism.
    Lledo PM; Hjelmstad GO; Mukherji S; Soderling TR; Malenka RC; Nicoll RA
    Proc Natl Acad Sci U S A; 1995 Nov; 92(24):11175-9. PubMed ID: 7479960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus.
    Miyamoto E
    J Pharmacol Sci; 2006; 100(5):433-42. PubMed ID: 16799259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alpha subunit of calcium/calmodulin-dependent protein kinase enhances excitatory amino acid and synaptic responses of rat spinal dorsal horn neurons.
    Kolaj M; Cerne R; Cheng G; Brickey DA; Randić M
    J Neurophysiol; 1994 Nov; 72(5):2525-31. PubMed ID: 7884477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Molecular mechanisms for memory formation].
    Manabe T
    Brain Nerve; 2008 Jul; 60(7):707-15. PubMed ID: 18646610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium/calmodulin-dependent protein kinase II: role in learning and memory.
    Soderling TR
    Mol Cell Biochem; 1993 Nov; 127-128():93-101. PubMed ID: 7935366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The molecular basis of CaMKII function in synaptic and behavioural memory.
    Lisman J; Schulman H; Cline H
    Nat Rev Neurosci; 2002 Mar; 3(3):175-90. PubMed ID: 11994750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation.
    Zhao D; Watson JB; Xie CW
    J Neurophysiol; 2004 Nov; 92(5):2853-8. PubMed ID: 15212428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice.
    Moriguchi S; Han F; Nakagawasai O; Tadano T; Fukunaga K
    J Neurochem; 2006 Apr; 97(1):22-9. PubMed ID: 16515554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses.
    Kakegawa W; Tsuzuki K; Yoshida Y; Kameyama K; Ozawa S
    Eur J Neurosci; 2004 Jul; 20(1):101-10. PubMed ID: 15245483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AMPA receptor phosphorylation during synaptic plasticity.
    Boehm J; Malinow R
    Biochem Soc Trans; 2005 Dec; 33(Pt 6):1354-6. PubMed ID: 16246117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maturation of a central glutamatergic synapse.
    Wu G; Malinow R; Cline HT
    Science; 1996 Nov; 274(5289):972-6. PubMed ID: 8875937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning.
    Giese KP; Fedorov NB; Filipkowski RK; Silva AJ
    Science; 1998 Feb; 279(5352):870-3. PubMed ID: 9452388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of glutamate receptors promotes a calcium-dependent and transporter-mediated release of purines in cultured avian retinal cells: possible involvement of calcium/calmodulin-dependent protein kinase II.
    Paes-de-Carvalho R; Dias BV; Martins RA; Pereira MR; Portugal CC; Lanfredi C
    Neurochem Int; 2005 May; 46(6):441-51. PubMed ID: 15769546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.