These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 8740525)

  • 1. Protein-protein interfaces: architectures and interactions in protein-protein interfaces and in protein cores. Their similarities and differences.
    Tsai CJ; Lin SL; Wolfson HJ; Nussinov R
    Crit Rev Biochem Mol Biol; 1996 Apr; 31(2):127-52. PubMed ID: 8740525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dataset of protein-protein interfaces generated with a sequence-order-independent comparison technique.
    Tsai CJ; Lin SL; Wolfson HJ; Nussinov R
    J Mol Biol; 1996 Jul; 260(4):604-20. PubMed ID: 8759323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural features can be unconserved in proteins with similar folds. An analysis of side-chain to side-chain contacts secondary structure and accessibility.
    Russell RB; Barton GJ
    J Mol Biol; 1994 Dec; 244(3):332-50. PubMed ID: 7966343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Close-range electrostatic interactions in proteins.
    Kumar S; Nussinov R
    Chembiochem; 2002 Jul; 3(7):604-17. PubMed ID: 12324994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding mechanisms of proteins with high sequence identity but different folds.
    Scott KA; Daggett V
    Biochemistry; 2007 Feb; 46(6):1545-56. PubMed ID: 17279619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folding of beta/alpha-unit scrambled forms of S. cerevisiae triosephosphate isomerase: Evidence for autonomy of substructure formation and plasticity of hydrophobic and hydrogen bonding interactions in core of (beta/alpha)8-barrel.
    Shukla A; Guptasarma P
    Proteins; 2004 May; 55(3):548-57. PubMed ID: 15103619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydration of protein-protein interfaces.
    Rodier F; Bahadur RP; Chakrabarti P; Janin J
    Proteins; 2005 Jul; 60(1):36-45. PubMed ID: 15856483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Similar chemistry, but different bond preferences in inter versus intra-protein interactions.
    Cohen M; Reichmann D; Neuvirth H; Schreiber G
    Proteins; 2008 Aug; 72(2):741-53. PubMed ID: 18260101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein--protein recognition: juxtaposition of domain and interface cores in immunoglobulins and other sandwich-like proteins.
    Potapov V; Sobolev V; Edelman M; Kister A; Gelfand I
    J Mol Biol; 2004 Sep; 342(2):665-79. PubMed ID: 15327963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein binding versus protein folding: the role of hydrophilic bridges in protein associations.
    Xu D; Lin SL; Nussinov R
    J Mol Biol; 1997 Jan; 265(1):68-84. PubMed ID: 8995525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt bridge stability in monomeric proteins.
    Kumar S; Nussinov R
    J Mol Biol; 1999 Nov; 293(5):1241-55. PubMed ID: 10547298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Favorable scaffolds: proteins with different sequence, structure and function may associate in similar ways.
    Keskin O; Nussinov R
    Protein Eng Des Sel; 2005 Jan; 18(1):11-24. PubMed ID: 15790576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence and structural analysis of cellular retinoic acid-binding proteins reveals a network of conserved hydrophobic interactions.
    Gunasekaran K; Hagler AT; Gierasch LM
    Proteins; 2004 Feb; 54(2):179-94. PubMed ID: 14696180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the role of electrostatic interactions in the design of protein-protein interfaces.
    Sheinerman FB; Honig B
    J Mol Biol; 2002 Apr; 318(1):161-77. PubMed ID: 12054776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fine structure analysis of a protein folding transition state; distinguishing between hydrophobic stabilization and specific packing.
    Anil B; Sato S; Cho JH; Raleigh DP
    J Mol Biol; 2005 Dec; 354(3):693-705. PubMed ID: 16246369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural determinants of transmembrane helical proteins.
    Harrington SE; Ben-Tal N
    Structure; 2009 Aug; 17(8):1092-103. PubMed ID: 19679087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction geometry involving planar groups in protein-protein interfaces.
    Saha RP; Bhattacharyya R; Chakrabarti P
    Proteins; 2007 Apr; 67(1):84-97. PubMed ID: 17221868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the role of the topology in protein folding by computational inverse folding experiments.
    Mucherino A; Costantini S; di Serafino D; D'Apuzzo M; Facchiano A; Colonna G
    Comput Biol Chem; 2008 Aug; 32(4):233-9. PubMed ID: 18479970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of a protein fold recognition method that takes into account four physicochemical properties: side-chain packing, solvation, hydrogen-bonding, and local conformation.
    Matsuo Y; Nishikawa K
    Proteins; 1995 Nov; 23(3):370-5. PubMed ID: 8710829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.