BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 8741588)

  • 1. Biosynthesis of the acetylenic compounds in cultured cells of Asparagus officinalis from D- and 13C-labelled phenylalanines.
    Terada K; Suwa K; Takeyama S; Honda C; Kamisako W
    Biol Pharm Bull; 1996 May; 19(5):748-51. PubMed ID: 8741588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of acetylenic compounds in cultured cells of Asparagus officinalis from [1-13C]- and [U-13C] Glucose.
    Terada K; Honda C; Takeyama S; Suwa K; Kamisako W
    Biol Pharm Bull; 1995 Nov; 18(11):1472-5. PubMed ID: 8593461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylenic compounds isolated from cultured cells of Asparagus officinalis.
    Terada K; Honda C; Suwa K; Takeyama S; Oku H; Kamisako W
    Chem Pharm Bull (Tokyo); 1995 Apr; 43(4):564-6. PubMed ID: 7600611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. H-NMR and mass spectral study of a D-enriched acetylenic norlignan, asparenyol, from cultured cells of Asparagus officinalis.
    Terada K; Kamisako W
    Biol Pharm Bull; 1999 Jun; 22(6):561-6. PubMed ID: 10408226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The formation of -cyclohexyl-fatty acids from shikimate in an acidophilic thermophilic bacillus. A new biosynthetic pathway.
    De Rosa M; Gambacorta A; Minale L; Bu'lock JD
    Biochem J; 1972 Jul; 128(4):751-4. PubMed ID: 4638790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenylalanine-independent biosynthesis of 1,3,5,8-tetrahydroxyxanthone. A retrobiosynthetic NMR study with root cultures of Swertia chirata.
    Wang CZ; Maier UH; Keil M; Zenk MH; Bacher A; Rohdich F; Eisenreich W
    Eur J Biochem; 2003 Jul; 270(14):2950-8. PubMed ID: 12846828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of 13C in biosynthetic studies. The labelling pattern in tenellin enriched from isotope-labelled acetate, methionine, and phenylalanine.
    Wright JL; Vining LC; McInnes AG; Smith DG; Walter JA
    Can J Biochem; 1977 Jul; 55(7):678-85. PubMed ID: 560900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of yatein in Anthriscus sylvestris.
    Sakakibara N; Suzuki S; Umezawa T; Shimada M
    Org Biomol Chem; 2003 Jul; 1(14):2474-85. PubMed ID: 12956064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A new pathway for biosynthesis of anthraquinones: incorporation of shikimic acid into 1,2-dihydroxyanthraquinone (alizarin) and 1,2,4-trihydroxyanthraquinone (purpurin) in Rubia tinctorum L].
    Leistner E; Zenk MH
    Z Naturforsch B; 1967 Aug; 22(8):865-8. PubMed ID: 4385023
    [No Abstract]   [Full Text] [Related]  

  • 10. [Concerning 2 ways of gallic acid biosynthesis].
    Zaprometov MN; Bukhlaeva VIa
    Biokhimiia; 1968; 33(2):383-6. PubMed ID: 5663922
    [No Abstract]   [Full Text] [Related]  

  • 11. Constituents of Asparagus officinalis evaluated for inhibitory activity against cyclooxygenase-2.
    Jang DS; Cuendet M; Fong HH; Pezzuto JM; Kinghorn AD
    J Agric Food Chem; 2004 Apr; 52(8):2218-22. PubMed ID: 15080623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of p-aminophenylalanine: part of a general scheme for the biosynthesis of chorisimic acid derivatives.
    Dardenne GA; Larsen PO; Wieczorkowska E
    Biochim Biophys Acta; 1975 Feb; 381(2):416-23. PubMed ID: 1120153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Microbial synthesis of deuterium labelled L-phenylalanine with different levels of isotopic enrichment by facultative methylotrophic bacterium Brevibacterium methylicum with RMP assimilation of carbon].
    Mosin OV; Shvets VI; Skladnev DA; Ignatov I
    Biomed Khim; 2014; 60(4):448-61. PubMed ID: 25249528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of tropic acid in Datura innoxia.
    Gibson CA; Youngken HW
    J Pharm Sci; 1967 Jul; 56(7):854-7. PubMed ID: 6034829
    [No Abstract]   [Full Text] [Related]  

  • 15. Biosynthesis of phytoquinones. Biosynthetic origins of the nuclei and satellite methyl groups of plastoquinone, tocopherols and tocopherolquinones in maize shoots, bean shoots and ivy leaves.
    Whistance GR; Threlfall DR
    Biochem J; 1968 Oct; 109(4):577-95. PubMed ID: 5683508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New acetylenic glucosides from Bidens bipinnata LINNE.
    Li S; Kuang HX; Okada Y; Okuyama T
    Chem Pharm Bull (Tokyo); 2004 Apr; 52(4):439-40. PubMed ID: 15056959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Pathways of inclusion of isotopes 2H and 13C into exometabolites in course of glucose utilization by medusomycete].
    Iurkevich DI; Kutyshenko VP
    Biofizika; 2001; 46(3):445-51. PubMed ID: 11449543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two new acetylenic compounds from Asparagus officinalis.
    Li XM; Cai JL; Wang WX; Ai HL; Mao ZC
    J Asian Nat Prod Res; 2016; 18(4):344-8. PubMed ID: 26558641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of phenylalanine, tyrosine, 3-(3-carbocyphenyl) alanine and 3-(3-carbocy-4-hydroxyphenyl) alanine in higher plants. Examples of the transformation possibilities for chorismic acid.
    Larsen PO; Onderka DK; Floss HG
    Biochim Biophys Acta; 1975 Feb; 381(2):397-408. PubMed ID: 1120151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the biosynthesis of antimycin A. I. Incorporation of 14 C-labeled metabolites into the 3-formamidosalicyl moiety.
    Neft N; Farley TM
    J Antibiot (Tokyo); 1972 May; 25(5):298-303. PubMed ID: 5042448
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.