BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 8741730)

  • 1. Rectifying conductance substates in a large conductance Ca(2+)-activated K+ channel: evidence for a fluctuating barrier mechanism.
    Moss GW; Moczydlowski E
    J Gen Physiol; 1996 Jan; 107(1):47-68. PubMed ID: 8741730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the interaction of bovine pancreatic trypsin inhibitor with maxi Ca(2+)-activated K+ channels. A model system for analysis of peptide-induced subconductance states.
    Lucchesi KJ; Moczydlowski E
    J Gen Physiol; 1991 Jun; 97(6):1295-319. PubMed ID: 1714938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous binding of basic peptides at intracellular sites on a large conductance Ca2+-activated K+ channel. Equilibrium and kinetic basis of negatively coupled ligand interactions.
    Favre I; Moczydlowski E
    J Gen Physiol; 1999 Feb; 113(2):295-320. PubMed ID: 9925826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-activity relationships for the interaction of bovine pancreatic trypsin inhibitor with an intracellular site on a large conductance Ca(2+)-activated K(+) channel.
    Favre I; Moss GW; Goldenberg DP; Otlewski J; Moczydlowski E
    Biochemistry; 2000 Feb; 39(8):2001-12. PubMed ID: 10684650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subconductance behavior in a maxi Ca2(+)-activated K+ channel induced by dendrotoxin-I.
    Lucchesi K; Moczydlowski E
    Neuron; 1990 Jan; 4(1):141-8. PubMed ID: 2310572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An evolutionarily conserved binding site for serine proteinase inhibitors in large conductance calcium-activated potassium channels.
    Moss GW; Marshall J; Morabito M; Howe JR; Moczydlowski E
    Biochemistry; 1996 Dec; 35(50):16024-35. PubMed ID: 8973172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of the BKCa channel gating ring with dendrotoxins.
    Takacs Z; Imredy JP; Bingham JP; Zhorov BS; Moczydlowski EG
    Channels (Austin); 2014; 8(5):421-32. PubMed ID: 25483585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast BK-type channel mediates the Ca(2+)-activated K(+) current in crayfish muscle.
    Araque A; Buño W
    J Neurophysiol; 1999 Oct; 82(4):1655-61. PubMed ID: 10515956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of single K(ATP) channels in mammalian dentate gyrus granule cells.
    Pelletier MR; Pahapill PA; Pennefather PS; Carlen PL
    J Neurophysiol; 2000 Nov; 84(5):2291-301. PubMed ID: 11067973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bovine pancreatic trypsin inhibitor as a probe of large conductance Ca(2+)-activated K+ channels at an internal site of interaction.
    Moczydlowski E; Moss GW; Lucchesi KJ
    Biochem Pharmacol; 1992 Jan; 43(1):21-8. PubMed ID: 1370897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subconductance states of Cx30 gap junction channels: data from transfected HeLa cells versus data from a mathematical model.
    Vogel R; Valiunas V; Weingart R
    Biophys J; 2006 Sep; 91(6):2337-48. PubMed ID: 16782793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allosteric voltage gating of potassium channels II. Mslo channel gating charge movement in the absence of Ca(2+).
    Horrigan FT; Aldrich RW
    J Gen Physiol; 1999 Aug; 114(2):305-36. PubMed ID: 10436004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance (BK) potassium channels.
    Horrigan FT; Aldrich RW
    J Gen Physiol; 2002 Sep; 120(3):267-305. PubMed ID: 12198087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypothesis for a serine proteinase-like domain at the COOH terminus of Slowpoke calcium-activated potassium channels.
    Moss GW; Marshall J; Moczydlowski E
    J Gen Physiol; 1996 Dec; 108(6):473-84. PubMed ID: 8972386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The actions of calmodulin antagonists W-7 and TFP and of calcium on the gating kinetics of the calcium-activated large conductance potassium channel of the chara protoplasmic drop: a substate-sensitive analysis.
    Laver DR; Cherry CA; Walker NA
    J Membr Biol; 1997 Feb; 155(3):263-74. PubMed ID: 9050450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoskeletal control of rectification and expression of four substates in cardiac inward rectifier K+ channels.
    Mazzanti M; Assandri R; Ferroni A; DiFrancesco D
    FASEB J; 1996 Feb; 10(2):357-61. PubMed ID: 8641571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of maxi-K channel activation by dehydrosoyasaponin-I.
    Giangiacomo KM; Kamassah A; Harris G; McManus OB
    J Gen Physiol; 1998 Oct; 112(4):485-501. PubMed ID: 9758866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide (NO)-induced activation of large conductance Ca2+-dependent K+ channels (BK(Ca)) in smooth muscle cells isolated from the rat mesenteric artery.
    Mistry DK; Garland CJ
    Br J Pharmacol; 1998 Jul; 124(6):1131-40. PubMed ID: 9720783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zn2(+)-induced subconductance events in cardiac Na+ channels prolonged by batrachotoxin. Current-voltage behavior and single-channel kinetics.
    Schild L; Ravindran A; Moczydlowski E
    J Gen Physiol; 1991 Jan; 97(1):117-42. PubMed ID: 1848882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gating transitions in bacterial ion channels measured at 3 microns resolution.
    Shapovalov G; Lester HA
    J Gen Physiol; 2004 Aug; 124(2):151-61. PubMed ID: 15277576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.