These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 8741730)

  • 21. Spontaneous transient outward currents and Ca(++)-activated K+ channels in swine tracheal smooth muscle cells.
    Saunders HM; Farley JM
    J Pharmacol Exp Ther; 1991 Jun; 257(3):1114-20. PubMed ID: 2046023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inactivation of BK channels mediated by the NH(2) terminus of the beta3b auxiliary subunit involves a two-step mechanism: possible separation of binding and blockade.
    Lingle CJ; Zeng XH; Ding JP; Xia XM
    J Gen Physiol; 2001 Jun; 117(6):583-606. PubMed ID: 11382808
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Maxi K+ channels and their relationship to the apical membrane conductance in Necturus gallbladder epithelium.
    Segal Y; Reuss L
    J Gen Physiol; 1990 May; 95(5):791-818. PubMed ID: 2362182
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biophysical properties of gap junction channels formed by mouse connexin40 in induced pairs of transfected human HeLa cells.
    Bukauskas FF; Elfgang C; Willecke K; Weingart R
    Biophys J; 1995 Jun; 68(6):2289-98. PubMed ID: 7544165
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of pinacidil on K+ channels in human coronary artery vascular smooth muscle cells.
    Bychkov R; Gollasch M; Ried C; Luft FC; Haller H
    Am J Physiol; 1997 Jul; 273(1 Pt 1):C161-71. PubMed ID: 9252453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stimulatory regulation of the large-conductance, calcium-activated potassium channel by G proteins in bovine adrenal chromaffin cells.
    Walsh KB; Wilson SP; Long KJ; Lemon SC
    Mol Pharmacol; 1996 Feb; 49(2):379-86. PubMed ID: 8632773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamics of signaling between Ca(2+) sparks and Ca(2+)- activated K(+) channels studied with a novel image-based method for direct intracellular measurement of ryanodine receptor Ca(2+) current.
    ZhuGe R; Fogarty KE; Tuft RA; Lifshitz LM; Sayar K; Walsh JV
    J Gen Physiol; 2000 Dec; 116(6):845-64. PubMed ID: 11099351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for a Ca-activated inwardly rectifying K channel in human macrophages.
    Gallin EK
    Am J Physiol; 1989 Jul; 257(1 Pt 1):C77-85. PubMed ID: 2750892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chloride channels in myocytes from rabbit colon are regulated by a pertussis toxin-sensitive G protein.
    Sun XP; Supplisson S; Mayer E
    Am J Physiol; 1993 Apr; 264(4 Pt 1):G774-85. PubMed ID: 7682783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of ruthenium red on membrane ionic currents in urinary bladder smooth muscle cells of the guinea-pig.
    Hirano M; Imaizumi Y; Muraki K; Yamada A; Watanabe M
    Pflugers Arch; 1998 Apr; 435(5):645-53. PubMed ID: 9479017
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery.
    Dong H; Waldron GJ; Cole WC; Triggle CR
    Br J Pharmacol; 1998 Mar; 123(5):821-32. PubMed ID: 9535009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Voltage-dependent and calcium-activated ion channels in the human mast cell line HMC-1.
    Duffy SM; Leyland ML; Conley EC; Bradding P
    J Leukoc Biol; 2001 Aug; 70(2):233-40. PubMed ID: 11493615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct evidence for calcium conductance of hyperpolarization-activated cyclic nucleotide-gated channels and human native If at physiological calcium concentrations.
    Michels G; Brandt MC; Zagidullin N; Khan IF; Larbig R; van Aaken S; Wippermann J; Hoppe UC
    Cardiovasc Res; 2008 Jun; 78(3):466-75. PubMed ID: 18252758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium-activated potassium channels in resting and activated human T lymphocytes. Expression levels, calcium dependence, ion selectivity, and pharmacology.
    Grissmer S; Nguyen AN; Cahalan MD
    J Gen Physiol; 1993 Oct; 102(4):601-30. PubMed ID: 7505804
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A scheme to account for the effects of Rb+ and K+ on inward rectifier K channels of bovine artery endothelial cells.
    Pennefather PS; DeCoursey TE
    J Gen Physiol; 1994 Apr; 103(4):549-81. PubMed ID: 8057078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane-delimited inhibition of maxi-K channel activity by the intermediate conductance Ca2+-activated K channel.
    Thompson J; Begenisich T
    J Gen Physiol; 2006 Feb; 127(2):159-69. PubMed ID: 16418402
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells.
    Hess P; Lansman JB; Tsien RW
    J Gen Physiol; 1986 Sep; 88(3):293-319. PubMed ID: 2428919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Patch and whole cell calcium currents recorded simultaneously in snail neurons.
    Lux HD; Brown AM
    J Gen Physiol; 1984 May; 83(5):727-50. PubMed ID: 6330276
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intracellular Ca(2+)-activated K+ channels modulated by variations in extracellular Ca2+ in dispersed bovine parathyroid cells.
    Kanazirska MP; Vassilev PM; Ye CP; Francis JE; Brown EM
    Endocrinology; 1995 May; 136(5):2238-43. PubMed ID: 7720673
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional coupling of the beta(1) subunit to the large conductance Ca(2+)-activated K(+) channel in the absence of Ca(2+). Increased Ca(2+) sensitivity from a Ca(2+)-independent mechanism.
    Nimigean CM; Magleby KL
    J Gen Physiol; 2000 Jun; 115(6):719-36. PubMed ID: 10828246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.