These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8741970)

  • 1. A new concept for Cochlear implant speech processing.
    Leisenberg M; Dees DC
    Ear Hear; 1996 Feb; 17(1):69-73. PubMed ID: 8741970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new concept for cochlear implant speech processing for prelingually deaf children.
    Leisenberg M
    Adv Otorhinolaryngol; 1995; 50():96-101. PubMed ID: 7610977
    [No Abstract]   [Full Text] [Related]  

  • 3. CINSTIM: the Southampton Cochlear Implant-Neural Network Simulation and Stimulation framework: implementation advances of a new, neural net-based speech-processing concept.
    Leisenberg M; Downes M
    Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():375-7. PubMed ID: 7668713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intelligibility of the Patient's Speech Predicts the Likelihood of Cochlear Implant Success in Prelingually Deaf Adults.
    van Dijkhuizen JN; Boermans PP; Briaire JJ; Frijns JH
    Ear Hear; 2016; 37(5):e302-10. PubMed ID: 26928004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speech intelligibility as a predictor of cochlear implant outcome in prelingually deafened adults.
    van Dijkhuizen JN; Beers M; Boermans PP; Briaire JJ; Frijns JH
    Ear Hear; 2011; 32(4):445-58. PubMed ID: 21258238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual Temporal Acuity Is Related to Auditory Speech Perception Abilities in Cochlear Implant Users.
    Jahn KN; Stevenson RA; Wallace MT
    Ear Hear; 2017; 38(2):236-243. PubMed ID: 27764001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sound-induced activation of auditory cortices in cochlear implant users with post- and prelingual deafness demonstrated by positron emission tomography.
    Naito Y; Hirano S; Honjo I; Okazawa H; Ishizu K; Takahashi H; Fujiki N; Shiomi Y; Yonekura Y; Konishi J
    Acta Otolaryngol; 1997 Jul; 117(4):490-6. PubMed ID: 9288201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships Among Peripheral and Central Electrophysiological Measures of Spatial and Spectral Selectivity and Speech Perception in Cochlear Implant Users.
    Scheperle RA; Abbas PJ
    Ear Hear; 2015; 36(4):441-53. PubMed ID: 25658746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Noise signal reduction in cochlear implant speech processors].
    Müller-Deile J
    HNO; 1995 Sep; 43(9):545-51. PubMed ID: 7591867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speech perception with multi-channel cochlear implant of short duration pulse strategy.
    Funasaka S; Takahashi O; Yukawa K; Hatsushika S; Hayashibara S
    Auris Nasus Larynx; 1987; 14(3):153-63. PubMed ID: 3451734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Mandarin tone and speech perception between advanced combination encoder and continuous interleaved sampling speech-processing strategies in children.
    Hwang CF; Chen HC; Yang CH; Peng JP; Weng CH
    Am J Otolaryngol; 2012; 33(3):338-44. PubMed ID: 21982716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Results with the currently used cochlear implant.
    Ito J; Takagi A; Kawano M; Takahashi H; Honjo I
    Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():298-300. PubMed ID: 7668678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of temporal fine structure stimulation on Mandarin identification in cochlear implant users].
    Qi B; Liu B; Dong R; Krenmayr A; Chen X; Wang S
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2014 Apr; 49(4):294-9. PubMed ID: 24931017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Binaural Cochlear Implant Sound Coding Strategy Inspired by the Contralateral Medial Olivocochlear Reflex.
    Lopez-Poveda EA; Eustaquio-Martín A; Stohl JS; Wolford RD; Schatzer R; Wilson BS
    Ear Hear; 2016; 37(3):e138-48. PubMed ID: 26862711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Audiologic results with the MSP/MPEAK and WSP/F0F1F2 processors and coding strategies for the nucleus cochlear implant.
    Pijl S
    J Otolaryngol; 1994 Aug; 23(4):286-91. PubMed ID: 7996630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noise susceptibility of cochlear implant users: the role of spectral resolution and smearing.
    Fu QJ; Nogaki G
    J Assoc Res Otolaryngol; 2005 Mar; 6(1):19-27. PubMed ID: 15735937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Musical Rehabilitation in Adult Cochlear Implant Recipients With a Self-administered Software.
    Smith L; Bartel L; Joglekar S; Chen J
    Otol Neurotol; 2017 Sep; 38(8):e262-e267. PubMed ID: 28806336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The benefits of remote microphone technology for adults with cochlear implants.
    Fitzpatrick EM; Séguin C; Schramm DR; Armstrong S; Chénier J
    Ear Hear; 2009 Oct; 30(5):590-9. PubMed ID: 19561509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization.
    Winn MB; Won JH; Moon IJ
    Ear Hear; 2016; 37(6):e377-e390. PubMed ID: 27438871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of age and postimplantation experience on speech perception measures in children with sequential bilateral cochlear implants.
    Peters BR; Litovsky R; Parkinson A; Lake J
    Otol Neurotol; 2007 Aug; 28(5):649-57. PubMed ID: 17712290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.