These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 8742231)
1. Involvement of mammalian liver cytosols and aldehyde oxidase in reductive metabolism of zonisamide. Sugihara K; Kitamura S; Tatsumi K Drug Metab Dispos; 1996 Feb; 24(2):199-202. PubMed ID: 8742231 [TBL] [Abstract][Full Text] [Related]
2. Extremely high drug-reductase activity based on aldehyde oxidase in monkey liver. Kitamura S; Ohashi KNK ; Sugihara K; Hosokawa R; Akagawa Y; Ohta S Biol Pharm Bull; 2001 Jul; 24(7):856-9. PubMed ID: 11456132 [TBL] [Abstract][Full Text] [Related]
3. Epoxide reductase activity of mammalian liver cytosols and aldehyde oxidase. Hirao Y; Kitamura S; Tatsumi K Carcinogenesis; 1994 Apr; 15(4):739-43. PubMed ID: 8149489 [TBL] [Abstract][Full Text] [Related]
4. Reductive metabolism of aromatic nitro compounds including carcinogens by rabbit liver preparations. Tatsumi K; Kitamura S; Narai N Cancer Res; 1986 Mar; 46(3):1089-93. PubMed ID: 3943085 [TBL] [Abstract][Full Text] [Related]
5. The role of mammalian intestinal bacteria in the reductive metabolism of zonisamide. Kitamura S; Sugihara K; Kuwasako M; Tatsumi K J Pharm Pharmacol; 1997 Mar; 49(3):253-6. PubMed ID: 9231340 [TBL] [Abstract][Full Text] [Related]
6. Rat liver microsomal cytochrome P-450 responsible for reductive metabolism of zonisamide. Nakasa H; Komiya M; Ohmori S; Rikihisa T; Kitada M Drug Metab Dispos; 1993; 21(5):777-81. PubMed ID: 7902235 [TBL] [Abstract][Full Text] [Related]
7. Formation of reductive metabolite, 2-sulfamoylacetylphenol, from zonisamide in rat liver microsomes. Nakasa H; Komiya M; Ohmori S; Kitada M; Rikihisa T; Kanakubo Y Res Commun Chem Pathol Pharmacol; 1992 Jul; 77(1):31-41. PubMed ID: 1439179 [TBL] [Abstract][Full Text] [Related]
8. Involvement of liver aldehyde oxidase in the reduction of nicotinamide N-oxide. Kitamura S; Tatsumi K Biochem Biophys Res Commun; 1984 Apr; 120(2):602-6. PubMed ID: 6233971 [TBL] [Abstract][Full Text] [Related]
9. Participation of liver aldehyde oxidase in reductive metabolism of hydroxamic acids to amides. Sugihara K; Tatsumi K Arch Biochem Biophys; 1986 Jun; 247(2):289-93. PubMed ID: 3717945 [TBL] [Abstract][Full Text] [Related]
10. Species differences in enantioselective 2-oxidations of RS-8359, a selective and reversible MAO-A inhibitor, and cinchona alkaloids by aldehyde oxidase. Itoh K; Yamamura M; Takasaki W; Sasaki T; Masubuchi A; Tanaka Y Biopharm Drug Dispos; 2006 Apr; 27(3):133-9. PubMed ID: 16400710 [TBL] [Abstract][Full Text] [Related]
11. Involvement of molybdenum hydroxylases in reductive metabolism of nitro polycyclic aromatic hydrocarbons in mammalian skin. Ueda O; Sugihara K; Ohta S; Kitamura S Drug Metab Dispos; 2005 Sep; 33(9):1312-8. PubMed ID: 15932950 [TBL] [Abstract][Full Text] [Related]
12. Characterization of brimonidine metabolism with rat, rabbit, dog, monkey and human liver fractions and rabbit liver aldehyde oxidase. Acheampong AA; Chien DS; Lam S; Vekich S; Breau A; Usansky J; Harcourt D; Munk SA; Nguyen H; Garst M; Tang-Liu D Xenobiotica; 1996 Oct; 26(10):1035-55. PubMed ID: 8905918 [TBL] [Abstract][Full Text] [Related]
13. Nicotinamide N-oxide reductase activity in bovine and rabbit eyes. Shimada S; Mishima H; Kitamura S; Tatsumi K Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1204-6. PubMed ID: 2954926 [TBL] [Abstract][Full Text] [Related]
14. Strain differences of liver aldehyde oxidase activity in rats. Sugihara K; Kitamura S; Tatsumi K Biochem Mol Biol Int; 1995 Nov; 37(5):861-9. PubMed ID: 8624491 [TBL] [Abstract][Full Text] [Related]
15. Characterization of human liver microsomal cytochrome P450 involved in the reductive metabolism of zonisamide. Nakasa H; Komiya M; Ohmori S; Rikihisa T; Kiuchi M; Kitada M Mol Pharmacol; 1993 Jul; 44(1):216-21. PubMed ID: 8341274 [TBL] [Abstract][Full Text] [Related]
16. Reductase activity of aldehyde oxidase toward the carcinogen N-hydroxy-2-acetylaminofluorene and the related hydroxamic acids. Kitamura S; Sugihara K; Tatsumi K Biochem Mol Biol Int; 1994 Dec; 34(6):1197-203. PubMed ID: 7696992 [TBL] [Abstract][Full Text] [Related]
17. Reduction of tertiary amine N-oxides by liver preparations: function of aldehyde oxidase as a major N-oxide reductase. Kitamura S; Tatsumi K Biochem Biophys Res Commun; 1984 Jun; 121(3):749-54. PubMed ID: 6743317 [TBL] [Abstract][Full Text] [Related]
18. Substrate specificity of human liver aldehyde oxidase toward substituted quinazolines and phthalazines: a comparison with hepatic enzyme from guinea pig, rabbit, and baboon. Beedham C; Critchley DJ; Rance DJ Arch Biochem Biophys; 1995 Jun; 319(2):481-90. PubMed ID: 7786031 [TBL] [Abstract][Full Text] [Related]
19. A unique tertiary amine N-oxide reduction system composed of quinone reductase and heme in rat liver preparations. Kitamura S; Sugihara K; Tatsumi K Drug Metab Dispos; 1999 Jan; 27(1):92-7. PubMed ID: 9884315 [TBL] [Abstract][Full Text] [Related]
20. Identification of aldehyde oxidase as the neonicotinoid nitroreductase. Dick RA; Kanne DB; Casida JE Chem Res Toxicol; 2005 Feb; 18(2):317-23. PubMed ID: 15720138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]