These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 8742238)
1. Arylamine N-acetyltransferases. Expression in Escherichia coli, purification, and substrate specificities of recombinant hamster monomorphic and polymorphic isozymes. Wagner CR; Bergstrom CP; Koning KR; Hanna PE Drug Metab Dispos; 1996 Feb; 24(2):245-53. PubMed ID: 8742238 [TBL] [Abstract][Full Text] [Related]
2. Overexpression and large-scale purification of recombinant hamster polymorphic arylamine N-acetyltransferase as a dihydrofolate reductase fusion protein. Sticha KR; Sieg CA; Bergstrom CP; Hanna PE; Wagner CR Protein Expr Purif; 1997 Jun; 10(1):141-53. PubMed ID: 9179301 [TBL] [Abstract][Full Text] [Related]
3. Monomorphic and polymorphic human arylamine N-acetyltransferases: a comparison of liver isozymes and expressed products of two cloned genes. Grant DM; Blum M; Beer M; Meyer UA Mol Pharmacol; 1991 Feb; 39(2):184-91. PubMed ID: 1996083 [TBL] [Abstract][Full Text] [Related]
4. Arylamine N-acetyltransferases: characterization of the substrate specificities and molecular interactions of environmental arylamines with human NAT1 and NAT2. Liu L; Von Vett A; Zhang N; Walters KJ; Wagner CR; Hanna PE Chem Res Toxicol; 2007 Sep; 20(9):1300-8. PubMed ID: 17672512 [TBL] [Abstract][Full Text] [Related]
6. Hamster monomorphic arylamine N-acetyltransferase: expression in Escherichia coli and purification. Bergstrom CP; Wagner CR; Ann DK; Hanna PE Protein Expr Purif; 1995 Feb; 6(1):45-55. PubMed ID: 7756838 [TBL] [Abstract][Full Text] [Related]
7. Isoform-selective inactivation of human arylamine N-acetyltransferases by reactive metabolites of carcinogenic arylamines. Liu L; Wagner CR; Hanna PE Chem Res Toxicol; 2009 Dec; 22(12):1962-74. PubMed ID: 19842618 [TBL] [Abstract][Full Text] [Related]
8. Irreversible inactivation of arylamine N-acetyltransferases in the presence of N-hydroxy-4-acetylaminobiphenyl: a comparison of human and hamster enzymes. Wang H; Wagner CR; Hanna PE Chem Res Toxicol; 2005 Feb; 18(2):183-97. PubMed ID: 15720122 [TBL] [Abstract][Full Text] [Related]
9. Metabolic activation of N-hydroxy-2-aminofluorene and N-hydroxy-2-acetylaminofluorene by monomorphic N-acetyltransferase (NAT1) and polymorphic N-acetyltransferase (NAT2) in colon cytosols of Syrian hamsters congenic at the NAT2 locus. Hein DW; Doll MA; Gray K; Rustan TD; Ferguson RJ Cancer Res; 1993 Feb; 53(3):509-14. PubMed ID: 8425184 [TBL] [Abstract][Full Text] [Related]
10. Cloning, sequencing, and recombinant expression of NAT1, NAT2, and NAT3 derived from the C3H/HeJ (rapid) and A/HeJ (slow) acetylator inbred mouse: functional characterization of the activation and deactivation of aromatic amine carcinogens. Fretland AJ; Doll MA; Gray K; Feng Y; Hein DW Toxicol Appl Pharmacol; 1997 Feb; 142(2):360-6. PubMed ID: 9070359 [TBL] [Abstract][Full Text] [Related]
11. Purification of hepatic polymorphic arylamine N-acetyltransferase from homozygous rapid acetylator inbred hamster: identity with polymorphic N-hydroxyarylamine-O-acetyltransferase. Trinidad A; Hein DW; Rustan TD; Ferguson RJ; Miller LS; Bucher KD; Kirlin WG; Ogolla F; Andrews AF Cancer Res; 1990 Dec; 50(24):7942-9. PubMed ID: 2253236 [TBL] [Abstract][Full Text] [Related]
12. Construction of Syrian hamster lines congenic at the polymorphic acetyltransferase locus (NAT2): acetylator genotype-dependent N- and O-acetylation of arylamine carcinogens. Hein DW; Doll MA; Rustan TD; Gray K; Ferguson RJ; Feng Y Toxicol Appl Pharmacol; 1994 Jan; 124(1):16-24. PubMed ID: 8291057 [TBL] [Abstract][Full Text] [Related]
13. Over-expression, purification, and characterization of recombinant human arylamine N-acetyltransferase 1. Wang H; Vath GM; Kawamura A; Bates CA; Sim E; Hanna PE; Wagner CR Protein J; 2005 Feb; 24(2):65-77. PubMed ID: 16003948 [TBL] [Abstract][Full Text] [Related]
15. Arylamine N-acetyltransferases: structural and functional implications of polymorphisms. Sim E; Lack N; Wang CJ; Long H; Westwood I; Fullam E; Kawamura A Toxicology; 2008 Dec; 254(3):170-83. PubMed ID: 18852012 [TBL] [Abstract][Full Text] [Related]
16. Identification of amino acids imparting acceptor substrate selectivity to human arylamine acetyltransferases NAT1 and NAT2. Goodfellow GH; Dupret JM; Grant DM Biochem J; 2000 May; 348 Pt 1(Pt 1):159-66. PubMed ID: 10794727 [TBL] [Abstract][Full Text] [Related]
17. Mass spectrometric investigation of the mechanism of inactivation of hamster arylamine N-acetyltransferase 1 by N-hydroxy-2-acetylaminofluorene. Guo Z; Wagner CR; Hanna PE Chem Res Toxicol; 2004 Mar; 17(3):275-86. PubMed ID: 15025497 [TBL] [Abstract][Full Text] [Related]
18. Affinity alkylation of hamster hepatic arylamine N-acetyltransferases: isolation of a modified cysteine residue. Cheon HG; Boteju LW; Hanna PE Mol Pharmacol; 1992 Jul; 42(1):82-93. PubMed ID: 1635555 [TBL] [Abstract][Full Text] [Related]
19. Characterization of hamster recombinant monomorphic and polymorphic arylamine N-acetyltransferases: bioactivation and mechanism-based inactivation studies with N-hydroxy-2-acetylaminofluorene. Sticha KR; Bergstrom CP; Wagner CR; Hanna PE Biochem Pharmacol; 1998 Jul; 56(1):47-59. PubMed ID: 9698088 [TBL] [Abstract][Full Text] [Related]
20. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies. Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]