These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
686 related articles for article (PubMed ID: 8742305)
1. Expression of the axonal cell adhesion molecules axonin-1 and Ng-CAM during the development of the chick retinotectal system. Rager G; Morino P; Schnitzer J; Sonderegger P J Comp Neurol; 1996 Feb; 365(4):594-609. PubMed ID: 8742305 [TBL] [Abstract][Full Text] [Related]
2. Expression of presynaptic proteins is closely correlated with the chronotopic pattern of axons in the retinotectal system of the chick. Bergmann M; Grabs D; Rager G J Comp Neurol; 2000 Mar; 418(3):361-72. PubMed ID: 10701832 [TBL] [Abstract][Full Text] [Related]
3. Differential expression of the mRNAs of the axonal glycoproteins axonin-1 and NgCAM in the developing chick retina. Morino P; Buchstaller A; Giger R; Sonderegger P; Rager G Brain Res Dev Brain Res; 1996 Feb; 91(2):252-9. PubMed ID: 8852376 [TBL] [Abstract][Full Text] [Related]
4. Tenascin in the developing chick visual system: distribution and potential role as a modulator of retinal axon growth. Perez RG; Halfter W Dev Biol; 1993 Mar; 156(1):278-92. PubMed ID: 7680630 [TBL] [Abstract][Full Text] [Related]
5. Clustering and functional cooperation of Ng-CAM and axonin-1 in the substratum-contact area of growth cones. Stoeckli ET; Ziegler U; Bleiker AJ; Groscurth P; Sonderegger P Dev Biol; 1996 Jul; 177(1):15-29. PubMed ID: 8660873 [TBL] [Abstract][Full Text] [Related]
6. Growth hormone and its receptor in projection neurons of the chick visual system: retinofugal and tectobulbar tracts. Baudet ML; Rattray D; Harvey S Neuroscience; 2007 Aug; 148(1):151-63. PubMed ID: 17618059 [TBL] [Abstract][Full Text] [Related]
7. Amphibian-specific regulation of polysialic acid and the neural cell adhesion molecule in development and regeneration of the retinotectal system of the salamander Pleurodeles waltl. Becker T; Becker CG; Niemann U; Naujoks-Manteuffel C; Gerardy-Schahn R; Roth G J Comp Neurol; 1993 Oct; 336(4):532-44. PubMed ID: 8245224 [TBL] [Abstract][Full Text] [Related]
8. Expression of multiple class three semaphorins in the retina and along the path of zebrafish retinal axons. Callander DC; Lamont RE; Childs SJ; McFarlane S Dev Dyn; 2007 Oct; 236(10):2918-24. PubMed ID: 17879313 [TBL] [Abstract][Full Text] [Related]
9. Identification of novel candidate regulators of retinotectal map formation through transcriptional profiling of the chick optic tectum. Kukreja S; Gautam P; Saxena R; Saxena M; Udaykumar N; Kumar A; Bhatt R; Kumar V; Sen J J Comp Neurol; 2017 Feb; 525(3):459-477. PubMed ID: 27410778 [TBL] [Abstract][Full Text] [Related]
10. Elevated protein tyrosine phosphorylation in the optic tract of the chick embryo. Biscardi JS; Shores CG; Maness PF Curr Eye Res; 1991 Dec; 10(12):1121-8. PubMed ID: 1802613 [TBL] [Abstract][Full Text] [Related]
11. Immunohistological localization of the adhesion molecules L1, N-CAM, and MAG in the developing and adult optic nerve of mice. Bartsch U; Kirchhoff F; Schachner M J Comp Neurol; 1989 Jun; 284(3):451-62. PubMed ID: 2474006 [TBL] [Abstract][Full Text] [Related]
12. Continuous renewal of the axonal pathway sensor apparatus by insertion of new sensor molecules into the growth cone membrane. Vogt L; Giger RJ; Ziegler U; Kunz B; Buchstaller A; Hermens WTJMC ; Kaplitt MG; Rosenfeld MR; Pfaff DW; Verhaagen J; Sonderegger P Curr Biol; 1996 Sep; 6(9):1153-8. PubMed ID: 8805367 [TBL] [Abstract][Full Text] [Related]
13. Tenascin protein and mRNA in the avian visual system: distribution and potential contribution to retinotectal development. Perez RG; Halfter W Perspect Dev Neurobiol; 1994; 2(1):75-87. PubMed ID: 7530146 [TBL] [Abstract][Full Text] [Related]
14. Interaction of amyloid precursor protein with contactins and NgCAM in the retinotectal system. Osterfield M; Egelund R; Young LM; Flanagan JG Development; 2008 Mar; 135(6):1189-99. PubMed ID: 18272596 [TBL] [Abstract][Full Text] [Related]
15. Axonin 1 is expressed primarily in subclasses of avian sensory neurons during outgrowth. Halfter W; Yip YP; Yip JW Brain Res Dev Brain Res; 1994 Mar; 78(1):87-101. PubMed ID: 8004776 [TBL] [Abstract][Full Text] [Related]
16. Structural analysis of fiber organization during development. Rager G Prog Brain Res; 1983; 58():313-9. PubMed ID: 6195691 [No Abstract] [Full Text] [Related]
17. Graded and lamina-specific distributions of ligands of EphB receptor tyrosine kinases in the developing retinotectal system. Braisted JE; McLaughlin T; Wang HU; Friedman GC; Anderson DJ; O'leary DD Dev Biol; 1997 Nov; 191(1):14-28. PubMed ID: 9356168 [TBL] [Abstract][Full Text] [Related]
18. Retinotectal ligands for the receptor tyrosine phosphatase CRYPalpha. Haj F; McKinnell I; Stoker A Mol Cell Neurosci; 1999 Sep; 14(3):225-40. PubMed ID: 10493824 [TBL] [Abstract][Full Text] [Related]
19. Protocadherin 19 regulates axon guidance in the developing Xenopus retinotectal pathway. Jung J; Park J; Park S; Kim CH; Jung H Mol Brain; 2024 Aug; 17(1):58. PubMed ID: 39175067 [TBL] [Abstract][Full Text] [Related]
20. EphA3 expressed in the chicken tectum stimulates nasal retinal ganglion cell axon growth and is required for retinotectal topographic map formation. Ortalli AL; Fiore L; Di Napoli J; Rapacioli M; Salierno M; Etchenique R; Flores V; Sanchez V; Carri NG; Scicolone G PLoS One; 2012; 7(6):e38566. PubMed ID: 22685584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]