These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 8742353)
1. Assessment of the biodegradation potential of psychrotrophic microorganisms. Whyte LG; Greer CW; Inniss WE Can J Microbiol; 1996 Feb; 42(2):99-106. PubMed ID: 8742353 [TBL] [Abstract][Full Text] [Related]
2. Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN. Andreoni V; Bernasconi S; Colombo M; van Beilen JB; Cavalca L Environ Microbiol; 2000 Oct; 2(5):572-7. PubMed ID: 11233165 [TBL] [Abstract][Full Text] [Related]
3. Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Whyte LG; Bourbonniére L; Greer CW Appl Environ Microbiol; 1997 Sep; 63(9):3719-23. PubMed ID: 9293024 [TBL] [Abstract][Full Text] [Related]
4. Functional gene abundances (nahAc, alkB, xylE) in the assessment of the efficacy of bioremediation. Salminen JM; Tuomi PM; Jørgensen KS Appl Biochem Biotechnol; 2008 Dec; 151(2-3):638-52. PubMed ID: 18592409 [TBL] [Abstract][Full Text] [Related]
5. Distribution of alkB genes within n-alkane-degrading bacteria. Vomberg A; Klinner U J Appl Microbiol; 2000 Aug; 89(2):339-48. PubMed ID: 10971768 [TBL] [Abstract][Full Text] [Related]
6. A survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil. Luz AP; Pellizari VH; Whyte LG; Greer CW Can J Microbiol; 2004 May; 50(5):323-33. PubMed ID: 15213740 [TBL] [Abstract][Full Text] [Related]
7. Detection, expression and quantitation of the biodegradative genes in Antarctic microorganisms using PCR. Panicker G; Mojib N; Aislabie J; Bej AK Antonie Van Leeuwenhoek; 2010 Mar; 97(3):275-87. PubMed ID: 20043207 [TBL] [Abstract][Full Text] [Related]
8. Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Whyte LG; Hawari J; Zhou E; Bourbonnière L; Inniss WE; Greer CW Appl Environ Microbiol; 1998 Jul; 64(7):2578-84. PubMed ID: 9647833 [TBL] [Abstract][Full Text] [Related]
9. Frequency of genes in aromatic and aliphatic hydrocarbon biodegradation pathways within bacterial populations from Alaskan sediments. Sotsky JB; Greer CW; Atlas RM Can J Microbiol; 1994 Nov; 40(11):981-5. PubMed ID: 7804909 [TBL] [Abstract][Full Text] [Related]
10. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Siciliano SD; Fortin N; Mihoc A; Wisse G; Labelle S; Beaumier D; Ouellette D; Roy R; Whyte LG; Banks MK; Schwab P; Lee K; Greer CW Appl Environ Microbiol; 2001 Jun; 67(6):2469-75. PubMed ID: 11375152 [TBL] [Abstract][Full Text] [Related]
11. Detection of catabolic genes in indigenous microbial consortia isolated from a diesel-contaminated soil. Milcic-Terzic J; Lopez-Vidal Y; Vrvic MM; Saval S Bioresour Technol; 2001 May; 78(1):47-54. PubMed ID: 11265787 [TBL] [Abstract][Full Text] [Related]
12. A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. Fuenmayor SL; Wild M; Boyes AL; Williams PA J Bacteriol; 1998 May; 180(9):2522-30. PubMed ID: 9573207 [TBL] [Abstract][Full Text] [Related]
13. In situ, real-time catabolic gene expression: extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater. Wilson MS; Bakermans C; Madsen EL Appl Environ Microbiol; 1999 Jan; 65(1):80-7. PubMed ID: 9872763 [TBL] [Abstract][Full Text] [Related]
14. Assessing soil microbial populations responding to crude-oil amendment at different temperatures using phylogenetic, functional gene (alkB) and physiological analyses. Hamamura N; Fukui M; Ward DM; Inskeep WP Environ Sci Technol; 2008 Oct; 42(20):7580-6. PubMed ID: 18983078 [TBL] [Abstract][Full Text] [Related]
15. Insights into the genetic diversity of initial dioxygenases from PAH-degrading bacteria. Moser R; Stahl U Appl Microbiol Biotechnol; 2001 May; 55(5):609-18. PubMed ID: 11414329 [TBL] [Abstract][Full Text] [Related]
16. The alkane oxidation system of Pseudomonas oleovorans: induction of the alk genes in Escherichia coli W3110 (pGEc47) affects membrane biogenesis and results in overexpression of alkane hydroxylase in a distinct cytoplasmic membrane subfraction. Nieboer M; Kingma J; Witholt B Mol Microbiol; 1993 Jun; 8(6):1039-51. PubMed ID: 8361351 [TBL] [Abstract][Full Text] [Related]
17. [Analysis of aromatic hydrocarbon catabolic genes in strains isolated from soil in Patagonia]. Vacca GS; Kiesel B; Wünsche L; Pucci OH Rev Argent Microbiol; 2002; 34(3):138-49. PubMed ID: 12415896 [TBL] [Abstract][Full Text] [Related]
18. Attenuation of petroleum hydrocarbon fractions using rhizobacterial isolates possessing alkB, C23O, and nahR genes for degradation of Agbaji JE; Nwaichi EO; Abu GO J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(6):635-645. PubMed ID: 34019473 [TBL] [Abstract][Full Text] [Related]
19. [Identification of the key genes of naphthalene catabolism in soil DNA]. Mavrodi DV; Kovalenko NP; Sokolov SL; Parfeniuk VG; Kosheleva IA; Boronin AM Mikrobiologiia; 2003; 72(5):672-80. PubMed ID: 14679907 [TBL] [Abstract][Full Text] [Related]
20. Genes similar to naphthalene dioxygenase genes in trifluralin-degrading bacteria. Bellinaso Mde L; Henriques JA; Gaylarde CC; Greer CW Pest Manag Sci; 2004 May; 60(5):474-8. PubMed ID: 15154514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]