These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 8742358)
1. The repB gene required for production of extracellular enzymes and fluorescent siderophores in Pseudomonas viridiflava is an analog of the gacA gene of Pseudomonas syringae. Liao CH; McCallus DE; Wells JM; Tzean SS; Kang GY Can J Microbiol; 1996 Feb; 42(2):177-82. PubMed ID: 8742358 [TBL] [Abstract][Full Text] [Related]
2. Molecular characterization of two gene loci required for production of the key pathogenicity factor pectate lyase in Pseudomonas viridiflava. Liao CH; McCallus DE; Fett WF Mol Plant Microbe Interact; 1994; 7(3):391-400. PubMed ID: 8012049 [TBL] [Abstract][Full Text] [Related]
3. Identification of gene loci controlling pectate lyase production and soft-rot pathogenicity in Pseudomonas marginalis. Liao CH; McCallus DE; Fett WF; Kang Y Can J Microbiol; 1997 May; 43(5):425-31. PubMed ID: 9165701 [TBL] [Abstract][Full Text] [Related]
4. Genetic evidence that the gacA gene encodes the cognate response regulator for the lemA sensor in Pseudomonas syringae. Rich JJ; Kinscherf TG; Kitten T; Willis DK J Bacteriol; 1994 Dec; 176(24):7468-75. PubMed ID: 8002569 [TBL] [Abstract][Full Text] [Related]
5. Cloning and characterization of a pectate lyase gene from the soft-rotting bacterium Pseudomonas viridiflava. Liao CH; Sasaki K; Nagahashi G; Hicks KB Mol Plant Microbe Interact; 1992; 5(4):301-8. PubMed ID: 1325218 [TBL] [Abstract][Full Text] [Related]
6. A newly identified regulator is required for virulence and toxin production in Pseudomonas syringae. Kitten T; Kinscherf TG; McEvoy JL; Willis DK Mol Microbiol; 1998 Jun; 28(5):917-29. PubMed ID: 9663679 [TBL] [Abstract][Full Text] [Related]
7. Cloning of pectate lyase gene pel from Pseudomonas fluorescens and detection of sequences homologous to pel in Pseudomonas viridiflava and Pseudomonas putida. Liao CH J Bacteriol; 1991 Jul; 173(14):4386-93. PubMed ID: 1906062 [TBL] [Abstract][Full Text] [Related]
8. Syringomycin production among strains of Pseudomonas syringae pv. syringae: conservation of the syrB and syrD genes and activation of phytotoxin production by plant signal molecules. Quigley NB; Gross DC Mol Plant Microbe Interact; 1994; 7(1):78-90. PubMed ID: 7909458 [TBL] [Abstract][Full Text] [Related]
9. Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Blumer C; Heeb S; Pessi G; Haas D Proc Natl Acad Sci U S A; 1999 Nov; 96(24):14073-8. PubMed ID: 10570200 [TBL] [Abstract][Full Text] [Related]
10. Suppression of a sensor kinase-dependent phenotype in Pseudomonas syringae by ribosomal proteins L35 and L20. Kitten T; Willis DK J Bacteriol; 1996 Mar; 178(6):1548-55. PubMed ID: 8626280 [TBL] [Abstract][Full Text] [Related]
11. A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5. Corbell N; Loper JE J Bacteriol; 1995 Nov; 177(21):6230-6. PubMed ID: 7592389 [TBL] [Abstract][Full Text] [Related]
12. Molecular cloning, characterization, and mutagenesis of a pel gene from Pseudomonas syringae pv. lachyrmans encoding a member of the Erwinia chrysanthemi pelADE family of pectate lyases. Bauer DW; Collmer A Mol Plant Microbe Interact; 1997 Apr; 10(3):369-79. PubMed ID: 9100381 [TBL] [Abstract][Full Text] [Related]
13. Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Chancey ST; Wood DW; Pierson LS Appl Environ Microbiol; 1999 Jun; 65(6):2294-9. PubMed ID: 10347004 [TBL] [Abstract][Full Text] [Related]
14. The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. Hrabak EM; Willis DK J Bacteriol; 1992 May; 174(9):3011-20. PubMed ID: 1314807 [TBL] [Abstract][Full Text] [Related]
15. Production and comparison of peptide siderophores from strains of distantly related pathovars of Pseudomonas syringae and Pseudomonas viridiflava LMG 2352. Bultreys A; Gheysen I Appl Environ Microbiol; 2000 Jan; 66(1):325-31. PubMed ID: 10618243 [TBL] [Abstract][Full Text] [Related]
16. Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. Xiao Y; Heu S; Yi J; Lu Y; Hutcheson SW J Bacteriol; 1994 Feb; 176(4):1025-36. PubMed ID: 8106313 [TBL] [Abstract][Full Text] [Related]
17. Copper as a signal for alginate synthesis in Pseudomonas syringae pv. syringae. Kidambi SP; Sundin GW; Palmer DA; Chakrabarty AM; Bender CL Appl Environ Microbiol; 1995 Jun; 61(6):2172-9. PubMed ID: 7793938 [TBL] [Abstract][Full Text] [Related]
18. Genetic divergence in the algT-muc operon controlling alginate biosynthesis and response to environmental stress in Pseudomonas syringae. Keith LM; Bender CL DNA Seq; 2001; 12(2):125-9. PubMed ID: 11761711 [TBL] [Abstract][Full Text] [Related]
19. Effects of the two-component system comprising GacA and GacS of Erwinia carotovora subsp. carotovora on the production of global regulatory rsmB RNA, extracellular enzymes, and harpinEcc. Cui Y; Chatterjee A; Chatterjee AK Mol Plant Microbe Interact; 2001 Apr; 14(4):516-26. PubMed ID: 11310739 [TBL] [Abstract][Full Text] [Related]