These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 8742805)

  • 61. [Neurochemical organization of the brain reinforcing systems].
    Shabanov PD; Nozdrachev AD; Lebedev AA; Lebedev VA
    Ross Fiziol Zh Im I M Sechenova; 2000 Aug; 86(8):935-45. PubMed ID: 11059010
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mesocorticolimbic dopaminergic network: functional and regulatory roles.
    Le Moal M; Simon H
    Physiol Rev; 1991 Jan; 71(1):155-234. PubMed ID: 1986388
    [No Abstract]   [Full Text] [Related]  

  • 63. Secondary reinforcing and motivating properties of stimuli contiguous with shock onset and termination.
    GOODSON FE; BROWNSTEIN A
    J Comp Physiol Psychol; 1955 Oct; 48(5):381-6. PubMed ID: 13271605
    [No Abstract]   [Full Text] [Related]  

  • 64. New technique for motivating and reinforcing children.
    JEFFREY WE
    Science; 1955 Mar; 121(3141):371. PubMed ID: 13237997
    [No Abstract]   [Full Text] [Related]  

  • 65. The regional specificity of rapid actions of cocaine.
    Aragona BJ
    Nat Rev Neurosci; 2011 Oct; 12(11):700; author reply 700. PubMed ID: 21971067
    [No Abstract]   [Full Text] [Related]  

  • 66. Updated Perspectives on the Neurobiology of Substance Use Disorders Using Neuroimaging.
    Murnane KS; Edinoff AN; Cornett EM; Kaye AD
    Subst Abuse Rehabil; 2023; 14():99-111. PubMed ID: 37583934
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Binge alcohol drinking alters the differential control of cholinergic interneurons over nucleus accumbens D1 and D2 medium spiny neurons.
    Kolpakova J; van der Vinne V; Gimenez-Gomez P; Le T; Martin GE
    Front Cell Neurosci; 2022; 16():1010121. PubMed ID: 36589290
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dopamine dysfunction in stimulant use disorders: mechanistic comparisons and implications for treatment.
    Kohno M; Dennis LE; McCready H; Hoffman WF
    Mol Psychiatry; 2022 Jan; 27(1):220-229. PubMed ID: 34117366
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Oxytocin and Addiction: Potential Glutamatergic Mechanisms.
    Sundar M; Patel D; Young Z; Leong KC
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33673694
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction.
    Kutlu MG; Gould TJ
    Learn Mem; 2016 Oct; 23(10):515-33. PubMed ID: 27634143
    [TBL] [Abstract][Full Text] [Related]  

  • 71. MicroRNAs Modulate Interactions between Stress and Risk for Cocaine Addiction.
    Doura MB; Unterwald EM
    Front Cell Neurosci; 2016; 10():125. PubMed ID: 27303265
    [TBL] [Abstract][Full Text] [Related]  

  • 72. On the positive and negative affective responses to cocaine and their relation to drug self-administration in rats.
    Ettenberg A; Fomenko V; Kaganovsky K; Shelton K; Wenzel JM
    Psychopharmacology (Berl); 2015 Jul; 232(13):2363-75. PubMed ID: 25662610
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Involvement of reactive oxygen species in cocaine-taking behaviors in rats.
    Jang EY; Ryu YH; Lee BH; Chang SC; Yeo MJ; Kim SH; Folsom RJ; Schilaty ND; Kim KJ; Yang CH; Steffensen SC; Kim HY
    Addict Biol; 2015 Jul; 20(4):663-75. PubMed ID: 24975938
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The role of guanfacine as a therapeutic agent to address stress-related pathophysiology in cocaine-dependent individuals.
    Fox H; Sinha R
    Adv Pharmacol; 2014; 69():217-65. PubMed ID: 24484979
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Stimulation-evoked dopamine release in the nucleus accumbens following cocaine administration in rats perinatally exposed to polychlorinated biphenyls.
    Fielding JR; Rogers TD; Meyer AE; Miller MM; Nelms JL; Mittleman G; Blaha CD; Sable HJ
    Toxicol Sci; 2013 Nov; 136(1):144-53. PubMed ID: 23912914
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Neuroimaging for drug addiction and related behaviors.
    Parvaz MA; Alia-Klein N; Woicik PA; Volkow ND; Goldstein RZ
    Rev Neurosci; 2011; 22(6):609-24. PubMed ID: 22117165
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Disulfiram attenuates drug-primed reinstatement of cocaine seeking via inhibition of dopamine β-hydroxylase.
    Schroeder JP; Cooper DA; Schank JR; Lyle MA; Gaval-Cruz M; Ogbonmwan YE; Pozdeyev N; Freeman KG; Iuvone PM; Edwards GL; Holmes PV; Weinshenker D
    Neuropsychopharmacology; 2010 Nov; 35(12):2440-9. PubMed ID: 20736996
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Dose-dependent differences in short ultrasonic vocalizations emitted by rats during cocaine self-administration.
    Barker DJ; Root DH; Ma S; Jha S; Megehee L; Pawlak AP; West MO
    Psychopharmacology (Berl); 2010 Sep; 211(4):435-42. PubMed ID: 20571780
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The dopamine D3 receptor partial agonist CJB090 and antagonist PG01037 decrease progressive ratio responding for methamphetamine in rats with extended-access.
    Orio L; Wee S; Newman AH; Pulvirenti L; Koob GF
    Addict Biol; 2010 Jul; 15(3):312-23. PubMed ID: 20456290
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Self-administration of (+)-methamphetamine and (+)-pseudoephedrine, alone and combined, by rhesus monkeys.
    Freeman KB; Wang Z; Woolverton WL
    Pharmacol Biochem Behav; 2010 Apr; 95(2):198-202. PubMed ID: 20100506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.