These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8743479)

  • 41. Two distinct modes of hypoosmotic medium-induced release of excitatory amino acids and taurine in the rat brain in vivo.
    Haskew-Layton RE; Rudkouskaya A; Jin Y; Feustel PJ; Kimelberg HK; Mongin AA
    PLoS One; 2008; 3(10):e3543. PubMed ID: 18958155
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of a Na+-dependent betaine transporter with Cl- channel properties in squid motor neurons.
    Petty CN; Lucero MT
    J Neurophysiol; 1999 Apr; 81(4):1567-74. PubMed ID: 10200192
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanisms of osmolyte release.
    Kinne RK
    Contrib Nephrol; 1998; 123():34-49. PubMed ID: 9761960
    [No Abstract]   [Full Text] [Related]  

  • 44. ATP-conducting maxi-anion channel: a new player in stress-sensory transduction.
    Sabirov RZ; Okada Y
    Jpn J Physiol; 2004 Feb; 54(1):7-14. PubMed ID: 15040843
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oligomeric forms of skate erythrocyte band 3. Effect of volume expansion.
    Musch MW; Davis EM; Goldstein L
    J Biol Chem; 1994 Aug; 269(31):19683-6. PubMed ID: 8051044
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Swelling-activated efflux of taurine and other organic osmolytes in endothelial cells.
    Manolopoulos VG; Voets T; Declercq PE; Droogmans G; Nilius B
    Am J Physiol; 1997 Jul; 273(1 Pt 1):C214-22. PubMed ID: 9252459
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gene expression of the transporters and biosynthetic enzymes of the osmolytes in astrocyte primary cultures exposed to hyperosmotic conditions.
    Bitoun M; Tappaz M
    Glia; 2000 Nov; 32(2):165-76. PubMed ID: 11008216
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chloride and taurine effluxes occur by different pathways in skate erythrocytes.
    Davis-Amaral EM; Musch MW; Goldstein L
    Am J Physiol; 1996 Dec; 271(6 Pt 2):R1544-9. PubMed ID: 8997351
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hyponatremia causes large sustained reductions in brain content of multiple organic osmolytes in rats.
    Verbalis JG; Gullans SR
    Brain Res; 1991 Dec; 567(2):274-82. PubMed ID: 1817731
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A common pathway for charge transport through voltage-sensing domains.
    Chanda B; Bezanilla F
    Neuron; 2008 Feb; 57(3):345-51. PubMed ID: 18255028
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of volume-sensitive organic osmolyte efflux and anion current in Xenopus oocytes.
    Hand M; Morrison R; Strange K
    J Membr Biol; 1997 May; 157(1):9-16. PubMed ID: 9141354
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cerebral edema, cell volume regulation, and the role of ion channels in organic osmolyte transport.
    Jackson PS; Madsen JR
    Pediatr Neurosurg; 1997 Dec; 27(6):279-85. PubMed ID: 9655141
    [No Abstract]   [Full Text] [Related]  

  • 53. P2X receptors: epithelial ion channels and regulators of salt and water transport.
    Wildman SS; King BF
    Nephron Physiol; 2008; 108(3):p60-7. PubMed ID: 18376132
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Erythropoietin stimulates tyrosine phosphorylation and taurine transport in skate erythrocytes.
    Musch MW; Davis-Amaral EM; Goldstein L
    J Exp Zool; 1996 Feb; 274(2):81-92. PubMed ID: 8742688
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Potentiation of the osmosensitive release of taurine and D-aspartate from SH-SY5Y neuroblastoma cells after activation of M3 muscarinic cholinergic receptors.
    Heacock AM; Kerley D; Gurda GT; VanTroostenberghe AT; Fisher SK
    J Pharmacol Exp Ther; 2004 Dec; 311(3):1097-104. PubMed ID: 15292461
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Creatine as a compatible osmolyte in muscle cells exposed to hypertonic stress.
    Alfieri RR; Bonelli MA; Cavazzoni A; Brigotti M; Fumarola C; Sestili P; Mozzoni P; De Palma G; Mutti A; Carnicelli D; Vacondio F; Silva C; Borghetti AF; Wheeler KP; Petronini PG
    J Physiol; 2006 Oct; 576(Pt 2):391-401. PubMed ID: 16873409
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activation of ion transport pathways by changes in cell volume.
    Sarkadi B; Parker JC
    Biochim Biophys Acta; 1991 Dec; 1071(4):407-27. PubMed ID: 1721542
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hypotonicity-activated efflux of taurine and myo-inositol in rat inner medullary collecting duct cells: evidence for a major common pathway.
    Ruhfus B; Kinne RK
    Kidney Blood Press Res; 1996; 19(6):317-24. PubMed ID: 8990043
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular basis for osmoregulation of organic osmolytes in renal medullary cells.
    Burg MB
    J Exp Zool; 1994 Feb; 268(2):171-5. PubMed ID: 8301253
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Caveolae and cell swelling. Focus on "Stimulation by caveolin-1 of the hypotonicity-induced release of taurine and ATP at basolateral, but not apical, membrane of Caco-2 cells".
    Martin S
    Am J Physiol Cell Physiol; 2006 May; 290(5):C1273-4. PubMed ID: 16601146
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.