These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 8743724)

  • 1. Picrotoxin potentiates contraction while inhibiting Ca current but increasing birefringence signal in frog skeletal muscle fibers.
    Jacquemond V; Oetliker H; Rougier O; Takeda K
    Jpn J Physiol; 1996 Feb; 46(1):99-104. PubMed ID: 8743724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium release and its voltage dependence in frog cut muscle fibers equilibrated with 20 mM EGTA.
    Pape PC; Jong DS; Chandler WK
    J Gen Physiol; 1995 Aug; 106(2):259-336. PubMed ID: 8537818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A non-cross-bridge stiffness in activated frog muscle fibers.
    Bagni MA; Cecchi G; Colombini B; Colomo F
    Biophys J; 2002 Jun; 82(6):3118-27. PubMed ID: 12023235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na(+)-Ca2+ exchange induces low Na+ contracture in frog skeletal muscle fibers after partial inhibition of sarcoplasmic reticulum Ca(2+)-ATPase.
    Même W; Léoty C
    Pflugers Arch; 1999 Nov; 438(6):851-9. PubMed ID: 10591074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silent calcium channels in skeletal muscle fibers of the crustacean Atya lanipes.
    Monterrubio J; Lizardi L; Zuazaga C
    J Membr Biol; 2000 Jan; 173(1):9-17. PubMed ID: 10612687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of birefringence signals and calcium transients in voltage-clamped cut skeletal muscle fibres of the frog.
    Kovács L; Schümperli RA; Szücs G
    J Physiol; 1983 Aug; 341():579-93. PubMed ID: 6604807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of agonists and antagonists of rhyanodine receptors on potassium contractures in twitch and tonic frog skeletal muscle fibers].
    Katina IE; Nasledov GA
    Biofizika; 2006; 51(5):898-905. PubMed ID: 17131831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium sparks in intact skeletal muscle fibers of the frog.
    Hollingworth S; Peet J; Chandler WK; Baylor SM
    J Gen Physiol; 2001 Dec; 118(6):653-78. PubMed ID: 11723160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Birefringence signal and early mechanical changes at normal and increased tonicities in frog skeletal muscle.
    Oetliker H; Schümperli RA
    J Physiol; 1984 Aug; 353():287-304. PubMed ID: 6332898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of tetracaine on voltage-activated calcium sparks in frog intact skeletal muscle fibers.
    Hollingworth S; Chandler WK; Baylor SM
    J Gen Physiol; 2006 Mar; 127(3):291-307. PubMed ID: 16505149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of caffeine on the birefringence signal in single skeletal muscle fibers and mammalian heart. Possible mechanism of action.
    Poledna J; Morad M
    Pflugers Arch; 1983 May; 397(3):184-9. PubMed ID: 6603608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bovine serum albumin potentiates caffeine- or ATP-induced tension in human skinned skeletal muscle fibers.
    Ponte CG; Oliveira CF; Suarez-Kurtz G
    Braz J Med Biol Res; 1997 May; 30(5):675-8. PubMed ID: 9283638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eugenol-induced contractions of saponin-skinned fibers are inhibited by heparin or by a ryanodine receptor blocker.
    Lofrano-Alves MS; Oliveira EL; Damiani CE; Kassouf-Silva I; Fogaça RT
    Can J Physiol Pharmacol; 2005 Dec; 83(12):1093-100. PubMed ID: 16462908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cardiac glycosides on excitation-contraction coupling in frog skeletal muscle fibres.
    Sárközi S; Szentesi P; Jona I; Csernoch L
    J Physiol; 1996 Sep; 495 ( Pt 3)(Pt 3):611-26. PubMed ID: 8887770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of sarcoplasmic reticulum (SR) calcium content on SR calcium release elicited by small voltage-clamp depolarizations in frog cut skeletal muscle fibers equilibrated with 20 mM EGTA.
    Pape PC; Carrier N
    J Gen Physiol; 1998 Aug; 112(2):161-79. PubMed ID: 9689025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Birefringence signals and tension development in single frog muscle fibres at short stimulus intervals.
    Oetliker H; Schümperli RA
    Experientia; 1979 Apr; 35(4):496-8. PubMed ID: 312211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible involvement of Ca(2+)-induced Ca2+ release mechanism in Ag(+)-induced contracture in frog skeletal muscle.
    Oba T; Nihonyanagi K; Yamaguchi M
    Eur J Pharmacol; 1995 Mar; 292(3-4):301-8. PubMed ID: 7796870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclopiazonic acid and thapsigargin reduce Ca2+ influx in frog skeletal muscle fibres as a result of Ca2+ store depletion.
    Même W; Léoty C
    Acta Physiol Scand; 2001 Dec; 173(4):391-9. PubMed ID: 11903131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of veratridine on Na and Ca currents in frog skeletal muscle.
    Nánási PP; Varró A; Lathrop DA; Bryant SH
    Gen Pharmacol; 1994 Dec; 25(8):1661-6. PubMed ID: 7721043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of Ca2+ release by caffeine and voltage in frog skeletal muscle.
    Shirokova N; Ríos E
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):317-39. PubMed ID: 8782099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.