These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 8743948)
1. Antisense RNA inactivation of gene expression of a cell-cell adhesion protein (gp64) in the cellular slime mold Polysphondylium pallidum. Funamoto S; Ochiai H J Cell Sci; 1996 May; 109 ( Pt 5)():1009-16. PubMed ID: 8743948 [TBL] [Abstract][Full Text] [Related]
2. Molecular cloning and the COOH-terminal processing of gp64, a putative cell-cell adhesion protein of the cellular slime mold Polysphondylium pallidum. Manabe R; Saito T; Kumazaki T; Sakaitani T; Nakata N; Ochiai H J Biol Chem; 1994 Jan; 269(1):528-35. PubMed ID: 8276846 [TBL] [Abstract][Full Text] [Related]
3. Assignment of disulfide bonds in gp64, a putative cell-cell adhesion protein of Polysphondylium pallidum. Presence of Sushi domains in the cellular slime mold protein. Saito T; Kumazaki T; Ochiai H J Biol Chem; 1994 Nov; 269(46):28798-802. PubMed ID: 7961835 [TBL] [Abstract][Full Text] [Related]
4. [Structural and functional analysis of gp64, a membrane protein of the cellular slime mold Polysphondylium pallidum]. Saito T; Funamoto S; Ochiai H Seikagaku; 1998 Jul; 70(7):537-42. PubMed ID: 9745347 [No Abstract] [Full Text] [Related]
5. A purification method and N-glycosylation sites of a 36-cysteine-containing, putative cell/cell adhesion glycoprotein gp64 of the cellular slime mold, Polysphondylium pallidum. Saito T; Kumazaki T; Ochiai H Eur J Biochem; 1993 Jan; 211(1-2):147-55. PubMed ID: 8425525 [TBL] [Abstract][Full Text] [Related]
6. Promoter analysis of the membrane protein gp64 gene of the cellular slime mold Polysphondylium pallidum. Takaoka N; Fukuzawa M; Saito T; Sakaitani T; Ochiai H Biochim Biophys Acta; 1999 Oct; 1447(2-3):226-30. PubMed ID: 10542319 [TBL] [Abstract][Full Text] [Related]
7. Evidence for a glycolipid anchor of gp64, a putative cell-cell adhesion protein of Polysphondylium pallidum. Saito T; Ochiai H Eur J Biochem; 1993 Dec; 218(2):623-8. PubMed ID: 8269952 [TBL] [Abstract][Full Text] [Related]
8. Element analysis of the Polysphondylium pallidum gp64 promoter. Takaoka N; Fukuzawa M; Kato A; Saito T; Ochiai H Biochim Biophys Acta; 2002 Apr; 1574(3):304-10. PubMed ID: 11997096 [TBL] [Abstract][Full Text] [Related]
9. Monoclonal antibodies against the mercaptoethanol-sensitive structure of a cell-cell adhesion protein of Polysphondylium pallidum. Manabe R; Manabe N; Ochiai H J Biochem; 1990 Nov; 108(5):852-8. PubMed ID: 2081738 [TBL] [Abstract][Full Text] [Related]
10. Establishment and maintenance of stable spatial patterns in lacZ fusion transformants of Polysphondylium pallidum. Vocke CD; Cox EC Development; 1992 May; 115(1):59-65. PubMed ID: 1638992 [TBL] [Abstract][Full Text] [Related]
11. Intercellular adhesion in the cellular slime mold Polysphondylium pallidum. Bozzaro S G Batteriol Virol Immunol; 1982; 75(1-6):25-47. PubMed ID: 6892337 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of macromolecules during microcyst germination in the cellular slime mold Polysphondylium pallidum. Ennis HL; Pennica D; Hill JM Dev Biol; 1978 Aug; 65(2):251-9. PubMed ID: 567150 [No Abstract] [Full Text] [Related]
13. Evidence for mitochondrial DNA polymorphism and uniparental inheritance in the cellular slime mold Polysphondylium pallidum: effect of intraspecies mating on mitochondrial DNA transmission. Mirfakhrai M; Tanaka Y; Yanagisawa K Genetics; 1990 Mar; 124(3):607-13. PubMed ID: 1968872 [TBL] [Abstract][Full Text] [Related]
14. Biochemical changes during growth and encystment of the cellular slime mold Polysphondylium pallidum. Githens S; Karnovsky ML J Cell Biol; 1973 Sep; 58(3):522-35. PubMed ID: 4795859 [TBL] [Abstract][Full Text] [Related]
15. Mutants of Polysphondylium pallidum showing delayed modifications of glycoproteins are altered in a regulatory signal for development. Toda K; Francis D; Gerisch G J Cell Sci; 1987 Feb; 87 ( Pt 1)():121-32. PubMed ID: 2444607 [TBL] [Abstract][Full Text] [Related]
16. Alpha-mannosidase and microcyst differentiation in the cellular slime mold Polysphondylium pallidum. O'Day DH J Bacteriol; 1973 Jan; 113(1):192-7. PubMed ID: 4569403 [TBL] [Abstract][Full Text] [Related]
17. Cloning and sequence analysis of the Antheraea pernyi nucleopolyhedrovirus gp64 gene. Wang W; Zhu S; Wang L; Yu F; Shen W J Biosci; 2005 Dec; 30(5):605-10. PubMed ID: 16388134 [TBL] [Abstract][Full Text] [Related]
18. Ammonia and the induction of microcyst differentiation in wild-type and mutant strains of the cellular slime mold Polysphondylium pallidum. Choi AH; O'Day DH Dev Biol; 1982 Aug; 92(2):356-64. PubMed ID: 6889546 [No Abstract] [Full Text] [Related]
19. True divergent differentiation in a cellular slime mold, Polysphondylium pallidum. Francis DW Differentiation; 1979; 15(3):187-92. PubMed ID: 230992 [TBL] [Abstract][Full Text] [Related]
20. Viral envelope protein gp64 transgenic mouse facilitates the generation of monoclonal antibodies against exogenous membrane proteins displayed on baculovirus. Saitoh R; Ohtomo T; Yamada Y; Kamada N; Nezu J; Kimura N; Funahashi S; Furugaki K; Yoshino T; Kawase Y; Kato A; Ueda O; Jishage K; Suzuki M; Fukuda R; Arai M; Iwanari H; Takahashi K; Sakihama T; Ohizumi I; Kodama T; Tsuchiya M; Hamakubo T J Immunol Methods; 2007 Apr; 322(1-2):104-17. PubMed ID: 17374538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]