These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 874416)

  • 1. Changes in neuromast chemosensitivity in Xenopus laevis kept under various environmental conditions.
    Blanchi D; Guardabassi A
    J Endocrinol; 1977 Jul; 74(1):157-8. PubMed ID: 874416
    [No Abstract]   [Full Text] [Related]  

  • 2. Chemoreceptors of the lateral-line organs in intact, hypophysectomized, and prolactin-treated hypophysectomized Xenopus laevis specimens.
    Blanchi D; Camino E; Guardabassi A
    Comp Biochem Physiol A Comp Physiol; 1976; 55(3):301-7. PubMed ID: 9241
    [No Abstract]   [Full Text] [Related]  

  • 3. Chemoreception of the lateral-line organ of an aquatic amphibian, Xenopus laevis.
    Onoda N; Katsuki Y
    Jpn J Physiol; 1972 Feb; 22(1):87-102. PubMed ID: 4115218
    [No Abstract]   [Full Text] [Related]  

  • 4. Hormonal regulation of the skin diffusional permeability to water during development and metamorphosis of Xenopus laevis Daudin.
    Schultheiss H; Hanke W; Maetz J
    Gen Comp Endocrinol; 1972 Apr; 18(2):400-4. PubMed ID: 4335780
    [No Abstract]   [Full Text] [Related]  

  • 5. Histological changes in Xenopus laevis Daudin specimens kept under dry conditions, then moved back to their natural aquatic environment. I. Pituitary, thyroid and testis.
    Guardabassi A; Campantico E; Panebianco I
    Arch Sci Biol (Bologna); 1978; 62(1-4):51-61. PubMed ID: 555326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indirect identification of prolactin-producing cells in the pituitary gland of Xenopus laevis Daudin.
    Campantico E; Guardabassi A; Guastalla A; Pattono P; Ronzani V
    Boll Soc Ital Biol Sper; 1979 Sep; 55(17):1666-72. PubMed ID: 550867
    [No Abstract]   [Full Text] [Related]  

  • 7. Environmentally induced return to juvenile-like chemosensitivity in the respiratory control system of adult bullfrog, Lithobates catesbeianus.
    Santin JM; Hartzler LK
    J Physiol; 2016 Nov; 594(21):6349-6367. PubMed ID: 27444338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central chemosensitivity and the reaction theory.
    Loeschcke HH
    J Physiol; 1982 Nov; 332():1-24. PubMed ID: 6818338
    [No Abstract]   [Full Text] [Related]  

  • 9. Histological changes in Xenopus laevis Daudin adult specimens kept under dry conditions, then moved back to their natural aquatic environment. II. Skin, kidney and interrenal tissue.
    Campantico E; Guardabassi A; Torasso L
    Arch Sci Biol (Bologna); 1978; 62(1-4):63-76. PubMed ID: 318018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Chemosensitivity of the neuronal membrane (identifiable giant neurons of the Aplysia)].
    Chalazonitis N; Arvanitaki A
    Mars Med; 1969; 106(11):843-9. PubMed ID: 4947061
    [No Abstract]   [Full Text] [Related]  

  • 11. Husbandry, General Care, and Transportation of Xenopus laevis and Xenopus tropicalis.
    McNamara S; Wlizla M; Horb ME
    Methods Mol Biol; 2018; 1865():1-17. PubMed ID: 30151755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action potentials of embryonic dorsal root ganglion neurones in Xenopus tadpoles.
    Baccaglini PI
    J Physiol; 1978 Oct; 283():585-604. PubMed ID: 722591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Peripheral chemosensitivity with special reference to the respiratory activities in the patients with bilateral carotid body resection].
    Honda Y
    Kokyu To Junkan; 1984 May; 32(5):457-63. PubMed ID: 6433416
    [No Abstract]   [Full Text] [Related]  

  • 14. Glutamate mimics the afferent transmitter in the Xenopus laevis lateral line.
    Bobbin RP; Morgan DN
    Birth Defects Orig Artic Ser; 1980; 16(4):107-9. PubMed ID: 6113014
    [No Abstract]   [Full Text] [Related]  

  • 15. Extracellular potassium and chemosensitivity in the rat carotid body, in vitro.
    Pepper DR; Landauer RC; Kumar P
    J Physiol; 1996 Jun; 493 ( Pt 3)(Pt 3):833-43. PubMed ID: 8799903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study of the chemoreception in mollusca].
    Kamardin NN; Salanki J; Rozsa KS; Nozdrachev AD
    Ross Fiziol Zh Im I M Sechenova; 1999 Dec; 85(12):1533-43. PubMed ID: 10687189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemosensitive neurons on the ventral medullary surface.
    Schläfke ME; Pokorski M; See WR; Prill RK; Loeschcke HH
    Bull Physiopathol Respir (Nancy); 1975; 11(2):277-84. PubMed ID: 1156720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double sucrose-gap method applied to single muscle fiber of Xenopus laevis.
    Nakajima S; Bastian J
    J Gen Physiol; 1974 Feb; 63(2):235-56. PubMed ID: 4812637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observations on carotid body chemoreceptor activity and cervical sympathetic discharge in the cat.
    Biscoe TJ; Purves MJ
    J Physiol; 1967 Jun; 190(3):413-24. PubMed ID: 6051779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurophysiology of gustatory receptor neurones in Drosophila.
    Tanimura T; Hiroi M; Inoshita T; Marion-Poll F
    SEB Exp Biol Ser; 2009; 63():59-76. PubMed ID: 19174989
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.