These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 8744245)

  • 1. Muscle compliance: implications for the control of movement.
    Gottlieb GL
    Exerc Sport Sci Rev; 1996; 24():1-34. PubMed ID: 8744245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment.
    Ebadzadeh M; Tondu B; Darlot C
    Neuroscience; 2005; 133(1):29-49. PubMed ID: 15893629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neuromusculoskeletal model to simulate the constant angular velocity elbow extension test of spasticity.
    Koo TK; Mak AF
    Med Eng Phys; 2006 Jan; 28(1):60-9. PubMed ID: 15908257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural control of rhythmic human arm movement: phase dependence and task modulation of hoffmann reflexes in forearm muscles.
    Zehr EP; Collins DF; Frigon A; Hoogenboom N
    J Neurophysiol; 2003 Jan; 89(1):12-21. PubMed ID: 12522155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous and nonlinear identification of mechanical and reflex properties of human elbow joint muscles.
    Zhang LQ; Rymer WZ
    IEEE Trans Biomed Eng; 1997 Dec; 44(12):1192-209. PubMed ID: 9401219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscular torque generation during imposed joint rotation: torque-angle relationships when subjects' only goal is to make a constant effort.
    Burgess PR; Jones LF; Buhler CF; Dewald JP; Zhang LQ; Rymer WZ
    Somatosens Mot Res; 2002; 19(4):327-40. PubMed ID: 12590834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antagonist muscle activation preceding rapid flexion movements of the elbow joint in human subjects.
    Heinzel A; Ross HG; Cleveland S
    Neurosci Lett; 2008 Mar; 434(2):206-11. PubMed ID: 18313851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling investigation of learning a fast elbow flexion in the horizontal plane--prediction of muscle forces and motor units action.
    Raikova RT; Gabriel DA; Aladjov HTs
    Comput Methods Biomech Biomed Engin; 2006 Aug; 9(4):211-9. PubMed ID: 17132529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coactivation of the elbow antagonist muscles is not affected by the speed of movement in isokinetic exercise.
    Bazzucchi I; Sbriccoli P; Marzattinocci G; Felici F
    Muscle Nerve; 2006 Feb; 33(2):191-9. PubMed ID: 16307438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inter-joint coupling strategy during adaptation to novel viscous loads in human arm movement.
    Debicki DB; Gribble PL
    J Neurophysiol; 2004 Aug; 92(2):754-65. PubMed ID: 15056688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Various characteristics of the control of cyclic movements].
    Bogdanov VA; Smetanin BN
    Biofizika; 1986; 31(3):506-10. PubMed ID: 3719023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Spinal neural mechanisms in voluntary movements].
    Shindo M
    Rinsho Shinkeigaku; 1995 Dec; 35(12):1509-11. PubMed ID: 8752447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multijoint reflex responses to constant-velocity volitional movements of the stroke elbow.
    Sangani SG; Starsky AJ; McGuire JR; Schmit BD
    J Neurophysiol; 2009 Sep; 102(3):1398-410. PubMed ID: 19553478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological basis of limb-impedance modulation during free and constrained movements.
    Damm L; McIntyre J
    J Neurophysiol; 2008 Nov; 100(5):2577-88. PubMed ID: 18715898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of human joint mechanical properties from single trial data.
    Xu Y; Hollerbach JM
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):1051-60. PubMed ID: 9691580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neuro-mechanical transducer model for controlling joint rotations and limb movements.
    Laczkó J; Kerry W; Rodolfo L
    Ideggyogy Sz; 2006 Jan; 59(1-2):32-43. PubMed ID: 16491570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced muscle selectivity during individuated finger movements in humans after damage to the motor cortex or corticospinal tract.
    Lang CE; Schieber MH
    J Neurophysiol; 2004 Apr; 91(4):1722-33. PubMed ID: 14668295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromuscular adaptation during skill acquisition on a two degree-of-freedom target-acquisition task: dynamic movement.
    Shemmell J; Tresilian JR; Riek S; Barry BK; Carson RG
    J Neurophysiol; 2005 Nov; 94(5):3058-68. PubMed ID: 15972829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initial electro-mechanical response to rearward perturbation.
    Moholkar N; Gade VK; Allen J; Edwards WT
    Gait Posture; 2009 Jun; 29(4):650-3. PubMed ID: 19250827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organized variability in the neuromuscular system: a survey of task-related adaptations.
    Kernell D
    Arch Ital Biol; 1992 Jan; 130(1):19-66. PubMed ID: 1610265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.